Hessian Matrix

本文介绍了二阶偏导数检验方法,这是一种多元微积分中用于确定函数临界点性质的技术。通过分析临界点处的海森矩阵特征值,可以判断该点是局部最小值点、局部最大值点还是鞍点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引用于
https://en.wikipedia.org/wiki/Second_partial_derivative_test#Functions_of_many_variables

In mathematics, the second partial derivative test is a method in multivariable calculus used to determine if a critical point of a function is a local minimum, maximum or saddle point.

For a function f of tow or more variables, to determine what kind of point a critical point is, one must look at the eigenvalues of the Hessian matrix at the critical point. The following test can be applied at any critical point (a, b, …) for which the Hessian matrix is invertible:

If the Hessian is positive definite (equivalently, has all eigenvalues positive) at (a, b, …), then f attains a local minimum at (a, b, …).
If the Hessian is negative definite (equivalently, has all eigenvalues negative) at (a, b, …), then f attains a local maximum at (a, b, …).
If the Hessian has both positive and negative eigenvalues then (a, b, …) is a saddle point for f (and in fact this is true even if (a, b, …) is degenerate).

In those cases not listed above, the test is inconclusive.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值