(大部分代码都是书上给好的,理解加整理写了一天,感觉收获很多)
1.简单线性模型,最小二乘法求解
依据神经网络与深度学习:案例与实践,大多数代码来自这本书,将paddle框架改为pytorch框架
import torch
import matplotlib.pyplot as plt
import numpy as np
torch.seed() # 设置随机种子
def linear_func(x,w=1.2,b=0.5):# 回归数据集
y = w*x + b
return y
# 生成数据集
def create_toy_data(func, interval, sample_num, noise = 0.0, add_outlier = False, outlier_ratio = 0.001):
"""
根据给定的函数,生成样本
输入: func:函数 interval: x的取值范围 sample_num: 样本数目 noise: 噪声均方差 add_outlier:是否生成异常值 outlier_ratio:异常值占比
输出: X: 特征数据,shape=[n_samples,1] y: 标签数据,shape=[n_samples,1]
"""
# 均匀采样,使用torch.rand在生成sample_num个随机数
X = torch.rand(size = [sample_num]) * (interval[1]-interval[0]) + interval[0]
y = func(X)
# 生成高斯分布的标签噪声
# 使用torch.normal生成0均值,noise标准差的数据
epsilon = torch.tensor(np.random.normal(0,noise,size=y.shape[0]))
y = y + epsilon
if add_outlier: # 生成额外的异常点
outlier_num = int(len(y)*outlier_ratio)
if outlier_num != 0:
# 使用torch.randint生成服从均匀分布的、范围在[0, len(y))的随机Tensor
outlier_idx = torch.randint(len(y),shape = [outlier_num])
y[outlier_idx] = y[outlier_idx] * 5
return X, y
func = linear_func
interval = (-10,10)
train_num = 100 # 训练样本数目
test_num = 50 # 测试样本数目
noise = 2
X_train, y_train = create_toy_data(func=func, interval=interval, sample_num=train_num, noise = noise, add_outlier = False) # 训练集
X_test, y_test = create_toy_data(func=func, interval=interval, sample_num=test_num, noise = noise, add_outlier = False) # 测试集
X_train_large, y_train_large = create_toy_data(func=func, interval=interval, sample_num=5000, noise = noise, add_outlier = False)
# torch.linspace返回一个Tensor,Tensor的值为在区间start和stop上均匀间隔的num个值,输出Tensor的长度为num
X_underlying = torch.linspace(interval[0],interval[1],train_num)
y_underlying = linear_func(X_underlying)
plt.scatter(X_train, y_train, marker='*', facecolor="none", edgecolor='#e4007f', s=50, label="train data")
plt.scatter(X_test, y_test, facecolor="none", edgecolor='#f19ec2', s=50, label="test data")
plt.plot(X_underlying, y_underlying, c='#000000', label=r"underlying distribution")
plt.legend(fontsize='x-large') # 给图像加图例
plt.show()
# 损失函数,基于均方误差
def mean_squared_error(y_true, y_pred):
"""
输入:
- y_true: tensor,样本真实标签
- y_pred: tensor, 样本预测标签
输出:
- error: float,误差值
"""
assert y_true.shape[0] == y_pred.shape[0]
# torch.square计算输入的平方值
# torch.mean沿 axis 计算 x 的平均值,默认axis是None,则对输入的全部元素计算平均值。
error = torch.mean(torch.square(y_true - y_pred))
return error
# 模型构建
class Op(object):#定义了一个基类 Op,用于实现操作(如神经网络中的前向和反向传播)init方法是构造函数call方法允许实例像函数一样被调用
def __init__(self):
pass
def __call__(self, inputs):
return self.forward(inputs)
def forward(self, inputs):
raise NotImplementedError
def backward(self, inputs):
raise NotImplementedError
class Linear(Op):
def __init__(self, input_size):
"""
输入: input_size:模型要处理的数据特征向量长度
"""
self.input_size = input_size
# 模型参数
self.params = {}
self.params['w'] = torch.randn([self.input_size, 1])
self.params['b'] = torch.zeros(1)
def __call__(self, X):
return self.forward(X)
# 前向函数
def forward(self, X):
"""
输入:X: tensor, shape=[N,D]
注意这里的X矩阵是由N个x向量的转置拼接成的,与原教材行向量表示方式不一致
输出:y_pred: tensor, shape=[N]
"""
N, D = X.shape
if self.input_size == 0:
return torch.full([N, 1], fill_value=self.params['b'])
assert D == self.input_size # 输入数据维度合法性验证
# 使用paddle.matmul计算两个tensor的乘积
y_pred = torch.matmul(X, self.params['w']) + self.params['b']
return y_pred
# 模型优化
def optimizer_lsm(model, X, y, reg_lambda=0):
N, D = X.shape
# 确保 X 和 y 是相同的数据类型,张量数据类型不匹配导致错误
X = X.float()
y = y.float()
# 计算输入特征的均值
x_bar_tran = X.mean(dim=0, keepdim=True)
# 计算标签的均值
y_bar = y.mean()
# 从输入中减去均值
x_sub = X - x_bar_tran
# 检查 x_sub 是否全为零
if torch.all(x_sub == 0):
model.params['b'] = y_bar
model.params['w'] = torch.zeros(D, dtype=X.dtype) # 使用与 X 相同的数据类型
return model
# 计算逆矩阵
tmp = torch.inverse(torch.matmul(x_sub.T, x_sub) + reg_lambda * torch.eye(D, dtype=X.dtype))
# 计算权重
w = torch.matmul(tmp, x_sub.T @ (y - y_bar))
# 计算偏置
b = y_bar - torch.matmul(x_bar_tran, w)
model.params['b'] = b
model.params['w'] = w.squeeze(-1)
return model
# 模型训练
input_size = 1
model = Linear(input_size)
model = optimizer_lsm(model,X_train.reshape([-1,1]),y_train.reshape([-1,1]))
print("w_pred:",model.params['w'].item(), "b_pred: ", model.params['b'].item())
y_train_pred = model(X_train.reshape([-1,1])).squeeze()
train_error = mean_squared_error(y_true=y_train, y_pred=y_train_pred).item()
print("train error: ",train_error)
# 模型评估
y_test_pred = model(X_test.reshape([-1,1])).squeeze()
test_error = mean_squared_error(y_true=y_test, y_pred=y_test_pred).item()
print("test error: ",test_error)
代码运行截图
增加样本数量为10000再次运行
上述损失函数计算error未除2,将其除2后,运行结果为
模型优化采用经验风险最小化,线性回归可以通过最小二乘法求出参数w和b的解析式。x,y若为不同的数据类型,则在运行过程中会报错。
2.多项式回归
import math
import torch
import matplotlib.pyplot as plt
import numpy as np
# 所用线性回归相同的地方:算子,均方误差,优化,评估
class Op(object):# 定义了一个基类 Op,用于实现操作(如神经网络中的前向和反向传播)init方法是构造函数call方法允许实例像函数一样被调用
def __init__(self):
pass
def __call__(self, inputs):
return self.forward(inputs)
def forward(self, inputs):
raise NotImplementedError
def backward(self, inputs):
raise NotImplementedError
class Linear(Op):
def __init__(self, input_size):
self.input_size = input_size
# 模型参数
self.params = {}
self.params['w'] = torch.randn([self.input_size, 1])
self.params['b'] = torch.zeros(1)
def __call__(self, X):
return self.forward(X)
# 前向函数
def forward(self, X):
N, D = X.shape
if self.input_size == 0:
return torch.full([N, 1], fill_value=self.params['b'])
assert D == self.input_size # 输入数据维度合法性验证
# 使用paddle.matmul计算两个tensor的乘积
y_pred = torch.matmul(X, self.params['w']) + self.params['b']
return y_pred
def optimizer_lsm(model, X, y, reg_lambda=0):
N, D = X.shape
# 确保 X 和 y 是相同的数据类型,张量数据类型不匹配导致错误
X = X.float()
y = y.float()
# 计算输入特征的均值
x_bar_tran = X.mean(dim=0, keepdim=True)
# 计算标签的均值
y_bar = y.mean()
# 从输入中减去均值
x_sub = X - x_bar_tran
# 检查 x_sub 是否全为零
if torch.all(x_sub == 0):
model.params['b'] = y_bar
model.params['w'] = torch.zeros(D, dtype=X.dtype) # 使用与 X 相同的数据类型
return model
# 计算逆矩阵
tmp = torch.inverse(torch.matmul(x_sub.T, x_sub) + reg_lambda * torch.eye(D, dtype=X.dtype))
# 计算权重
w = torch.matmul(tmp, x_sub.T @ (y - y_bar))
# 计算偏置
b = y_bar - torch.matmul(x_bar_tran, w)
model.params['b'] = b
model.params['w'] = w.squeeze(-1)
return model
def mean_squared_error(y_true, y_pred):
assert y_true.shape[0] == y_pred.shape[0]
# torch.square计算输入的平方值
# torch.mean沿 axis 计算 x 的平均值,默认axis是None,则对输入的全部元素计算平均值。
error = torch.mean(torch.square(y_true - y_pred))
return error
# 使用的非线性函数为sin函数
def sin(x):
y = torch.sin(2 * math.pi * x)
return y
#数据集构建
def create_toy_data(func, interval, sample_num, noise = 0.0, add_outlier = False, outlier_ratio = 0.001):
"""
根据给定的函数,生成样本
输入: func:函数 interval: x的取值范围 sample_num: 样本数目 noise: 噪声均方差 add_outlier:是否生成异常值 outlier_ratio:异常值占比
输出: X: 特征数据,shape=[n_samples,1] y: 标签数据,shape=[n_samples,1]
"""
# 均匀采样,使用torch.rand在生成sample_num个随机数
X = torch.rand(size = [sample_num]) * (interval[1]-interval[0]) + interval[0]
y = func(X)
# 生成高斯分布的标签噪声
# 使用torch.normal生成0均值,noise标准差的数据
epsilon = torch.tensor(np.random.normal(0,noise,size=y.shape[0]))
y = y + epsilon
if add_outlier: # 生成额外的异常点
outlier_num = int(len(y)*outlier_ratio)
if outlier_num != 0:
# 使用torch.randint生成服从均匀分布的、范围在[0, len(y))的随机Tensor
outlier_idx = torch.randint(len(y),[outlier_num])
y[outlier_idx] = y[outlier_idx] * 5
return X, y
# 生成数据
func = sin
interval = (0,1)
train_num = 50
test_num = 10
noise = 0.5 #0.1
X_train, y_train = create_toy_data(func=func, interval=interval, sample_num=train_num, noise = noise)
X_test, y_test = create_toy_data(func=func, interval=interval, sample_num=test_num, noise = noise)
# 改为pytorch时,将num改为steps
X_underlying = torch.linspace(interval[0],interval[1],steps=100)
y_underlying = sin(X_underlying)
# 绘制图像
plt.rcParams['figure.figsize'] = (8.0, 6.0)
plt.scatter(X_train, y_train, facecolor="none", edgecolor='#e4007f', s=50, label="train data")
plt.plot(X_underlying, y_underlying, c='#000000', label=r"$\sin(2\pi x)$")
plt.legend(fontsize='x-large')
plt.savefig('ml-vis2.pdf')
plt.show()
# 模型构建
def polynomial_basis_function(x, degree=2):
"""
输入:x: tensor, 输入的数据,shape=[N,1] degree: int, 多项式的阶数example Input: [[2], [3], [4]], degree=2 example Output: [[2^1, 2^2], [3^1, 3^2], [4^1, 4^2]]
注意:本案例中,在degree>=1时不生成全为1的一列数据;degree为0时生成形状与输入相同,全1的Tensor
输出:x_result: tensor
"""
if degree == 0:
return torch.ones(x.shape, dtype=torch.float32)
x_tmp = x
x_result = x_tmp
for i in range(2, degree + 1):
x_tmp = torch.multiply(x_tmp, x) # 逐元素相乘
x_result = torch.cat((x_result, x_tmp), dim=-1)
return x_result
# 模型训练
plt.rcParams['figure.figsize'] = (12.0, 8.0)
for i, degree in enumerate([0, 1, 3, 8]): # []中为多项式的阶数
model = Linear(degree)
X_train_transformed = polynomial_basis_function(X_train.reshape([-1, 1]), degree)
X_underlying_transformed = polynomial_basis_function(X_underlying.reshape([-1, 1]), degree)
model = optimizer_lsm(model, X_train_transformed, y_train.reshape([-1, 1])) # 拟合得到参数
y_underlying_pred = model(X_underlying_transformed).squeeze()
print(model.params)
# 绘制图像
plt.subplot(2, 2, i + 1)
plt.scatter(X_train, y_train, facecolor="none", edgecolor='#e4007f', s=50, label="train data")
plt.plot(X_underlying, y_underlying, c='#000000', label=r"$\sin(2\pi x)$")
plt.plot(X_underlying, y_underlying_pred, c='#f19ec2', label="predicted function")
plt.ylim(-2, 1.5)
plt.annotate("M={}".format(degree), xy=(0.95, -1.4))
# plt.legend(bbox_to_anchor=(1.05, 0.64), loc=2, borderaxespad=0.)
plt.legend(loc='lower left', fontsize='x-large')
plt.savefig('ml-vis3.pdf')
plt.show()
# 模型评估
# 训练误差和测试误差
training_errors = []
test_errors = []
distribution_errors = []
# 遍历多项式阶数
for i in range(9):
model = Linear(i)
X_train_transformed = polynomial_basis_function(X_train.reshape([-1, 1]), i)
X_test_transformed = polynomial_basis_function(X_test.reshape([-1, 1]), i)
X_underlying_transformed = polynomial_basis_function(X_underlying.reshape([-1, 1]), i)
optimizer_lsm(model, X_train_transformed, y_train.reshape([-1, 1]))
y_train_pred = model(X_train_transformed).squeeze()
y_test_pred = model(X_test_transformed).squeeze()
y_underlying_pred = model(X_underlying_transformed).squeeze()
train_mse = mean_squared_error(y_true=y_train, y_pred=y_train_pred).item()
training_errors.append(train_mse)
test_mse = mean_squared_error(y_true=y_test, y_pred=y_test_pred).item()
test_errors.append(test_mse)
distribution_mse = mean_squared_error(y_true=y_underlying, y_pred=y_underlying_pred).item()
distribution_errors.append(distribution_mse)
print("train errors: \n", training_errors)
print("test errors: \n", test_errors)
print ("distribution errors: \n", distribution_errors)
# 绘制图片
plt.rcParams['figure.figsize'] = (8.0, 6.0)
plt.plot(training_errors, '-.', mfc="none", mec='#e4007f', ms=10, c='#e4007f', label="Training")
plt.plot(test_errors, '--', mfc="none", mec='#f19ec2', ms=10, c='#f19ec2', label="Test")
plt.plot(distribution_errors, '-', mfc="none", mec="#3D3D3F", ms=10, c="#3D3D3F", label="Distribution")
plt.legend(fontsize='x-large')
plt.xlabel("degree")
plt.ylabel("MSE")
plt.show()
#针对过拟合的解决情况
degree = 6 # 多项式阶数
reg_lambda = 0.00001 # 正则化系数
X_train_transformed = polynomial_basis_function(X_train.reshape([-1,1]), degree)
X_test_transformed = polynomial_basis_function(X_test.reshape([-1,1]), degree)
X_underlying_transformed = polynomial_basis_function(X_underlying.reshape([-1,1]), degree)
model = Linear(degree)
optimizer_lsm(model,X_train_transformed,y_train.reshape([-1,1]))
y_test_pred=model(X_test_transformed).squeeze()
y_underlying_pred=model(X_underlying_transformed).squeeze()
model_reg = Linear(degree)
optimizer_lsm(model_reg,X_train_transformed,y_train.reshape([-1,1]),reg_lambda)
y_test_pred_reg=model_reg(X_test_transformed).squeeze()
y_underlying_pred_reg=model_reg(X_underlying_transformed).squeeze()
mse = mean_squared_error(y_true = y_test, y_pred = y_test_pred).item()
print("mse:",mse)
mes_reg = mean_squared_error(y_true = y_test, y_pred = y_test_pred_reg).item()
print("mse_with_l2_reg:",mes_reg)
# 绘制图像
plt.scatter(X_train, y_train, facecolor="none", edgecolor="#e4007f", s=50, label="train data")
plt.plot(X_underlying, y_underlying, c='#000000', label=r"$\sin(2\pi x)$")
plt.plot(X_underlying, y_underlying_pred, c='#e4007f', linestyle="--", label="$deg. = 6$")
plt.plot(X_underlying, y_underlying_pred_reg, c='#f19ec2', linestyle="-.", label="$deg. = 6, \ell_2 reg$")
plt.ylim(-1.5, 1.5)
plt.annotate("lambda={}".format(reg_lambda), xy=(0.82, -1.4))
plt.legend(fontsize='large')
plt.show()
(1)构建数据集与简单线性回归类似
(2)构建模型后的简单测试
同样学习参数w,只不过需要对输入特征根据多项式阶数进行变换
(3)训练模型
使用简单线性规划中的函数,最小化均方误差
增加训练集个数
(4)模型评估
通过均方误差来衡量训练误差、测试误差以及在没有噪音的加入下sin
函数值与多项式回归值之间的误差
(5)针对过拟合处理情况
添加一个惩罚项来避免系数倾向于较大的取值,并加入正则化值
更改项数和正则化的值,再次运行
思考:如果训练数据中存在一些异常样本,会对最终模型有何影响?怎样处理可以尽可能减少异常样本对模型的影响?
可能导致过拟合,w,b计算不正确,可以通过数据预处理移除异常值,在回归任务中对正常值和异常值设置不同的权重,添加正则化减少模型复杂度等方法。
3.基于线性回归的波士顿房价分析
import pandas as pd # 开源数据分析和操作工具
import os
import torch
import matplotlib.pyplot as plt
import torch.nn as nn
torch.seed()
# 处理数据集
# 利用pandas加载波士顿房价的数据集
data=pd.read_csv('boston_house_prices.csv')
# 预览前5行数据
print(data.head())
print(data.isna().sum())# 查看缺失值
# 绘制箱线图查看异常值分布
def boxplot(data, fig_name):
# 绘制每个属性的箱线图
data_col = list(data.columns)
# 连续画几个图片
plt.figure(figsize=(5, 5), dpi=300)
# 子图调整
plt.subplots_adjust(wspace=0.6)
# 每个特征画一个箱线图
for i, col_name in enumerate(data_col):
plt.subplot(3, 5, i + 1)
# 画箱线图
plt.boxplot(data[col_name],
showmeans=True,
meanprops={"markersize": 1, "marker": "D", "markeredgecolor": "#C54680"}, # 均值的属性
medianprops={"color": "#946279"}, # 中位数线的属性
whiskerprops={"color": "#8E004D", "linewidth": 0.4, 'linestyle': "--"},
flierprops={"markersize": 0.4},
)
plt.title(col_name, fontdict={"size": 5}, pad=2)
plt.yticks(fontsize=4, rotation=90)
plt.tick_params(pad=0.5)
plt.xticks([])
plt.savefig(fig_name)
plt.show()
boxplot(data, 'ml-vis5.pdf')
# 四分位处理异常值
num_features = data.select_dtypes(exclude=['object', 'bool']).columns.tolist()
for feature in num_features:
if feature == 'CHAS':
continue
Q1 = data[feature].quantile(q=0.25) # 下四分位
Q3 = data[feature].quantile(q=0.75) # 上四分位
IQR = Q3 - Q1
top = Q3 + 1.5 * IQR # 最大估计值
bot = Q1 - 1.5 * IQR # 最小估计值
values = data[feature].values
values[values > top] = top # 临界值取代噪声
values[values < bot] = bot # 临界值取代噪声
data[feature] = values.astype(data[feature].dtypes)
# 再次查看箱线图,异常值已被临界值替换(数据量较多或本身异常值较少时,箱线图展示会不容易体现出来)
boxplot(data, 'ml-vis6.pdf')
# 划分训练集和测试集
def train_test_split(X, y, train_percent=0.8):
n = len(X)
shuffled_indices = torch.randperm(n) # 返回一个数值在0到n-1、随机排列的1-D Tensor
train_set_size = int(n * train_percent)
train_indices = shuffled_indices[:train_set_size]
test_indices = shuffled_indices[train_set_size:]
X = X.values
y = y.values
X_train = X[train_indices]
y_train = y[train_indices]
X_test = X[test_indices]
y_test = y[test_indices]
return X_train, X_test, y_train, y_test
# 进行归一化处理
X = data.drop(['MEDV'], axis=1)
y = data['MEDV']
X_train, X_test, y_train, y_test = train_test_split(X, y) # X_train每一行是个样本,shape[N,D]
X_train = torch.tensor(X_train,dtype=torch.float32)
X_test = torch.tensor(X_test,dtype=torch.float32)
y_train = torch.tensor(y_train,dtype=torch.float32)
y_test = torch.tensor(y_test,dtype=torch.float32)
X_min = torch.min(X_train, dim=0).values
X_max = torch.max(X_train, dim=0).values
X_train = (X_train-X_min)/(X_max-X_min)
X_test = (X_test-X_min)/(X_max-X_min)
# 训练集构造
train_dataset=(X_train,y_train)
# 测试集构造
test_dataset=(X_test,y_test)
# 模型构建,用到线性回归中算子
class Op(object):
def __init__(self):
pass
def __call__(self, inputs):
return self.forward(inputs)
def forward(self, inputs):
raise NotImplementedError
def backward(self, inputs):
raise NotImplementedError
class Linear(Op):
def __init__(self, input_size):
"""
输入: input_size:模型要处理的数据特征向量长度
"""
self.input_size = input_size
# 模型参数
self.params = {}
self.params['w'] = torch.randn([self.input_size, 1])
self.params['b'] = torch.zeros(1)
def __call__(self, X):
return self.forward(X)
# 前向函数
def forward(self, X):
N, D = X.shape
if self.input_size == 0:
return torch.full([N, 1], fill_value=self.params['b'])
assert D == self.input_size # 输入数据维度合法性验证
# 使用paddle.matmul计算两个tensor的乘积
y_pred = torch.matmul(X, self.params['w']) + self.params['b']
return y_pred
input_size = 12
model=Linear(input_size)
#完善Runner类,用到线性回归中模型优化函数
def optimizer_lsm(model, X, y, reg_lambda=0):
N, D = X.shape
# 确保 X 和 y 是相同的数据类型,张量数据类型不匹配导致错误
X = X.float()
y = y.float()
# 计算输入特征的均值
x_bar_tran = X.mean(dim=0, keepdim=True)
# 计算标签的均值
y_bar = y.mean()
# 从输入中减去均值
x_sub = X - x_bar_tran
# 检查 x_sub 是否全为零
if torch.all(x_sub == 0):
model.params['b'] = y_bar
model.params['w'] = torch.zeros(D, dtype=X.dtype) # 使用与 X 相同的数据类型
return model
# 计算逆矩阵
tmp = torch.inverse(torch.matmul(x_sub.T, x_sub) + reg_lambda * torch.eye(D, dtype=X.dtype))
# 计算权重
w = torch.matmul(tmp, x_sub.T @ (y - y_bar))
# 计算偏置
b = y_bar - torch.matmul(x_bar_tran, w)
model.params['b'] = b
model.params['w'] = w.squeeze(-1)
class Runner(object):
def __init__(self, model, optimizer, loss_fn, metric):
# 优化器和损失函数为None,不再关注
# 模型
self.model = model
# 评估指标
self.metric = metric
# 优化器
self.optimizer = optimizer
def train(self, dataset, reg_lambda, model_dir):
X, y = dataset
self.optimizer(self.model, X, y, reg_lambda)
# 保存模型
self.save_model(model_dir)
def evaluate(self, dataset, **kwargs):
X, y = dataset
y_pred = self.model(X)
result = self.metric(y_pred, y)
return result
def predict(self, X, **kwargs):
return self.model(X)
def save_model(self, model_dir):
if not os.path.exists(model_dir):
os.makedirs(model_dir)
params_saved_path = os.path.join(model_dir, 'params.pdtensor')
torch.save(model.params, params_saved_path)
def load_model(self, model_dir):
params_saved_path = os.path.join(model_dir, 'params.pdtensor')
self.model.params = torch.load(params_saved_path)
optimizer = optimizer_lsm
mse_loss = nn.MSELoss()
# 实例化Runner
runner = Runner(model, optimizer=optimizer, loss_fn=None, metric=mse_loss)
# 模型训练
saved_dir = 'models'
# 启动训练
runner.train(train_dataset,reg_lambda=0,model_dir=saved_dir)
columns_list = data.columns.to_list()
weights = runner.model.params['w'].tolist()
b = runner.model.params['b'].item()
for i in range(len(weights)):
print(columns_list[i],"weight:",weights[i])
print("b:",b)
# 测试模型
# 加载模型权重
runner.load_model(saved_dir)
mse = runner.evaluate(test_dataset)
print('MSE:', mse.item())
# 用此模型预测房价
runner.load_model(saved_dir)
pred = runner.predict(X_test[:1])
print("真实房价:",y_test[:1].item())
print("预测的房价:",pred.item())
针对于箱线图的具体介绍
(1)数据处理 :数据清洗、数据集划分、特征工程
经过四分位处理后的箱线图
(2)模型构建
用优化器对神经网络进行构建,用与线性模型相同的Linear类实现了线性层的基本功能,包括初始化参数和执行前向传播,允许你通过调用实例来计算线性变换.
(3)模型训练
观察出各种因素与房价之间的关系
(4)模型测试
加载训练好的模型参数,在测试集上得到模型的MSE指标
(5)模型预测
预测值与真实值相差不多。