卷积神经网络(2)基于LeNet实现手写体数字识别实验

1.观察数据集

import json
import gzip
import numpy as np
from PIL import Image
from matplotlib import pyplot as plt

# 打印并观察数据集分布情况
train_set, dev_set, test_set = json.load(gzip.open('./mnist.json.gz'))
train_images, train_labels = train_set[0][:1000], train_set[1][:1000]
dev_images, dev_labels = dev_set[0][:200], dev_set[1][:200]
test_images, test_labels = test_set[0][:200], test_set[1][:200]
train_set, dev_set, test_set = [train_images, train_labels], [dev_images, dev_labels], [test_images, test_labels]
print('Length of train/dev/test set:{}/{}/{}'.format(len(train_set[0]), len(dev_set[0]), len(test_set[0])))
image, label = train_set[0][0], train_set[1][0]
image, label = np.array(image).astype('float32'), int(label)
# 原始图像数据为长度784的行向量,需要调整为[28,28]大小的图像
image = np.reshape(image, [28,28])
image = Image.fromarray(image.astype('uint8'), mode='L')
print("The number in the picture is {}".format(label))
plt.figure(figsize=(5, 5))
plt.imshow(image)
plt.savefig('conv-number5.pdf')

数据预处理:

将原始的数据集封装为Dataset类,以便DataLoader调用。调整图片大小:LeNet网络对输入图片大小的要求为 32×32,而MNIST数据集中的原始图片大小却是28×28 ,这里为了符合网络的结构设计,将其调整为32×32;

规范化:通过规范化手段,把输入图像的分布改变成均值为0,标准差为1的标准正态分布,使得最优解的寻优过程明显会变得平缓,训练过程更容易收敛。

# 数据预处理
transforms = Compose([Resize(32), Normalize(mean=[127.5], std=[127.5])])
class MNIST_dataset(torch.utils.data.Dataset):
    def __init__(self, dataset, transforms, mode='train'):
        self.mode = mode
        self.transforms =transforms
        self.dataset = dataset

    def __getitem__(self, idx):
        # 获取图像和标签
        image, label = self.dataset[0][idx], self.dataset[1][idx]
        image, label = np.array(image).astype('float32'), int(label)
        image = np.reshape(image, [28,28])
        image = Image.fromarray(image.astype('uint8'), mode='L')
        image = self.transforms(image)

        return image, label

    def __len__(self):
        return len(self.dataset[0])
# 固定随机种子
torch.seed()
# 加载mnist数据集
train_dataset = MNIST_dataset(dataset=train_set, transforms=transforms, mode='train')
test_dataset = MNIST_dataset(dataset=test_set, transforms=transforms, mode='test')
dev_dataset = MNIST_dataset(dataset=dev_set, transforms=transforms, mode='dev')

2.模型构建

这里的LeNet-5和原始版本有4点不同

C3层没有使用连接表来减少卷积数量

汇聚层使用了简单的平均汇聚,没有引入权重和偏置参数以及非线性激活函数

卷积层的激活函数使用ReLU函数

最后的输出层为一个全连接线性层

网络共有7层,包含3个卷积层、2个汇聚层以及2个全连接层的简单卷积神经网络接,受输入图像大小为32×32=1 02432×32=1024,输出对应10个类别的得分。 具体实现如下:

import json
import gzip
import numpy as np
from PIL import Image
from matplotlib import pyplot as plt
from torchvision.transforms import Compose, Resize, Normalize
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.nn.init import constant_, normal_, uniform_

# 打印并观察数据集分布情况
train_set, dev_set, test_set = json.load(gzip.open('./mnist.json.gz'))
train_images, train_labels = train_set[0][:1000], train_set[1][:1000]
dev_images, dev_labels = dev_set[0][:200], dev_set[1][:200]
test_images, test_labels = test_set[0][:200], test_set[1][:200]
train_set, dev_set, test_set = [train_images, train_labels], [dev_images, dev_labels], [test_images, test_labels]
print('Length of train/dev/test set:{}/{}/{}'.format(len(train_set[0]), len(dev_set[0]), len(test_set[0])))
image, label = train_set[0][0], train_set[1][0]
image, label = np.array(image).astype('float32'), int(label)
# 原始图像数据为长度784的行向量,需要调整为[28,28]大小的图像
image = np.reshape(image, [28,28])
image = Image.fromarray(image.astype('uint8'), mode='L')
print("The number in the picture is {}".format(label))
plt.figure(figsize=(5, 5))
plt.imshow(image)
# 数据预处理
transforms = Compose([Resize(32), Normalize(mean=[127.5], std=[127.5])])
class MNIST_dataset(torch.utils.data.Dataset):
    def __init__(self, dataset, transforms, mode='train'):
        self.mode = mode
        self.transforms =transforms
        self.dataset = dataset

    def __getitem__(self, idx):
        # 获取图像和标签
        image, label = self.dataset[0][idx], self.dataset[1][idx]
        image, label = np.array(image).astype('float32'), int(label)
        image = np.reshape(image, [28,28])
        image = Image.fromarray(image.astype('uint8'), mode='L')
        image = self.transforms(image)

        return image, label

    def __len__(self):
        return len(self.dataset[0])
# 固定随机种子
torch.seed()
# 加载mnist数据集
train_dataset = MNIST_dataset(dataset=train_set, transforms=transforms, mode='train')
test_dataset = MNIST_dataset(dataset=test_set, transforms=transforms, mode='test')
dev_dataset = MNIST_dataset(dataset=dev_set, transforms=transforms, mode='dev')

class Conv2D(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):
        weight_attr = constant_(torch.empty(size=(out_channels, in_channels, kernel_size, kernel_size)), val=1.0)
        bias_attr = constant_(torch.empty(size=(out_channels, 1)), val=0.0)
        super(Conv2D, self).__init__()
        # 创建卷积核
        self.weight = torch.nn.parameter.Parameter(weight_attr, requires_grad=True)
        # 创建偏置
        self.bias = torch.nn.parameter.Parameter(bias_attr, requires_grad=True)
        self.stride = stride
        self.padding = padding
        # 输入通道数
        self.in_channels = in_channels
        # 输出通道数
        self.out_channels = out_channels

    # 基础卷积运算
    def single_forward(self, X, weight):
        # 零填充
        new_X = torch.zeros([X.shape[0], X.shape[1] + 2 * self.padding, X.shape[2] + 2 * self.padding])
        new_X[:, self.padding:X.shape[1] + self.padding, self.padding:X.shape[2] + self.padding] = X
        u, v = weight.shape
        output_w = (new_X.shape[1] - u) // self.stride + 1
        output_h = (new_X.shape[2] - v) // self.stride + 1
        output = torch.zeros([X.shape[0], output_w, output_h])
        for i in range(0, output.shape[1]):
            for j in range(0, output.shape[2]):
                output[:, i, j] = torch.sum(
                    new_X[:, self.stride * i:self.stride * i + u, self.stride * j:self.stride * j + v] * weight,
                    dim=[1, 2])
        return output

    def forward(self, inputs):
        feature_maps = []
        # 进行多次多输入通道卷积运算
        p = 0
        for w, b in zip(self.weight, self.bias):  # P个(w,b),每次计算一个特征图Zp
            multi_outs = []
            # 循环计算每个输入特征图对应的卷积结果
            for i in range(self.in_channels):
                single = self.single_forward(inputs[:, i, :, :], w[i])
                multi_outs.append(single)
            # 将所有卷积结果相加
            feature_map = torch.sum(torch.stack(multi_outs), dim=0) + b  # Zp
            feature_maps.append(feature_map)
            p += 1
        # 将所有Zp进行堆叠
        out = torch.stack(feature_maps, 1)
        return out


class Pool2D(nn.Module):
    def __init__(self, size=(2, 2), mode='max', stride=1):
        super(Pool2D, self).__init__()
        # 汇聚方式
        self.mode = mode
        self.h, self.w = size
        self.stride = stride

    def forward(self, x):
        output_w = (x.shape[2] - self.w) // self.stride + 1
        output_h = (x.shape[3] - self.h) // self.stride + 1
        output = torch.zeros([x.shape[0], x.shape[1], output_w, output_h])
        # 汇聚
        for i in range(output.shape[2]):
            for j in range(output.shape[3]):
                # 最大汇聚
                if self.mode == 'max':
                    output[:, :, i, j] = torch.max(
                        x[:, :, self.stride * i:self.stride * i + self.w, self.stride * j:self.stride * j + self.h])
                # 平均汇聚
                elif self.mode == 'avg':
                    output[:, :, i, j] = torch.mean(
                        x[:, :, self.stride * i:self.stride * i + self.w, self.stride * j:self.stride * j + self.h],
                        dim=[2, 3])

        return output

class Model_LeNet(nn.Module):
    def __init__(self, in_channels, num_classes=10):
        super(Model_LeNet, self).__init__()
        # 卷积层:输出通道数为6,卷积核大小为5×5
        self.conv1 = Conv2D(in_channels=in_channels, out_channels=6, kernel_size=5)
        # 汇聚层:汇聚窗口为2×2,步长为2
        self.pool2 = Pool2D(size=(2, 2), mode='max', stride=2)
        # 卷积层:输入通道数为6,输出通道数为16,卷积核大小为5×5,步长为1
        self.conv3 = Conv2D(in_channels=6, out_channels=16, kernel_size=5, stride=1)
        # 汇聚层:汇聚窗口为2×2,步长为2
        self.pool4 = Pool2D(size=(2, 2), mode='avg', stride=2)
        # 卷积层:输入通道数为16,输出通道数为120,卷积核大小为5×5
        self.conv5 = Conv2D(in_channels=16, out_channels=120, kernel_size=5, stride=1)
        # 全连接层:输入神经元为120,输出神经元为84
        self.linear6 = nn.Linear(120, 84)
        # 全连接层:输入神经元为84,输出神经元为类别数
        self.linear7 = nn.Linear(84, num_classes)

    def forward(self, x):
        # C1:卷积层+激活函数
        output = F.relu(self.conv1(x))
        # S2:汇聚层
        output = self.pool2(output)
        # C3:卷积层+激活函数
        output = F.relu(self.conv3(output))
        # S4:汇聚层
        output = self.pool4(output)
        # C5:卷积层+激活函数
        output = F.relu(self.conv5(output))
        # 输入层将数据拉平[B,C,H,W] -> [B,CxHxW]
        output = torch.squeeze(output, dim=3)
        output = torch.squeeze(output, dim=2)
        # F6:全连接层
        output = F.relu(self.linear6(output))
        # F7:全连接层
        output = self.linear7(output)
        return output
# 这里用np.random创建一个随机数组作为输入数据
inputs = np.random.randn(*[1, 1, 32, 32])
inputs = inputs.astype('float32')
model = Model_LeNet(in_channels=1, num_classes=10)
c = []
for a, b in model.named_children():
    c.append(a)
print(c)
x = torch.tensor(inputs)
for a, item in model.named_children():
    try:
        x = item(x)
    except:
        x = torch.reshape(x, [x.shape[0], -1])
        x = item(x)
    d = []
    e = []
    for b, c in item.named_parameters():
        d.append(b)
        e.append(c)
    if len(e) == 2:
        print(a, x.shape, e[0].shape,
              e[1].shape)
    else:
        # 汇聚层没有参数
        print(a, x.shape)

用上次实验 定义的算子完成,运行结果:

从输出结果看,

对于大小为32×32的单通道图像,先用6个大小为5×5的卷积核对其进行卷积运算,输出为6个28×28大小的特征图;

6个28×28大小的特征图经过大小为2×2,步长为2的汇聚层后,输出特征图的大小变为14×14;

6个14×14大小的特征图再经过16个大小为5×5的卷积核对其进行卷积运算,得到16个10×10大小的输出特征图;

16个10×10大小的特征图经过大小为2×2,步长为2的汇聚层后,输出特征图的大小变为5×5;

16个5×5大小的特征图再经过120个大小为5×5的卷积核对其进行卷积运算,得到120个1×1大小的输出特征图;

此时,将特征图展平成1维,则有120个像素点,经过输入神经元个数为120,输出神经元个数为84的全连接层后,输出的长度变为84。

再经过一个全连接层的计算,最终得到了长度为类别数的输出结果。

考虑到自定义的Conv2DPool2D算子中包含多个for循环,所以运算速度比较慢。torch框架中,针对卷积层算子和汇聚层算子进行了速度上的优化,这里基于nn.moulde构建LeNet-5模型,对比与上边实现的模型的运算速度。

class PyTorch_LeNet(nn.Module):
    def __init__(self, in_channels, num_classes=10):
        super(PyTorch_LeNet, self).__init__()
        # 卷积层:输出通道数为6,卷积核大小为5*5
        self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=6, kernel_size=5)
        # 汇聚层:汇聚窗口为2*2,步长为2
        self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
        # 卷积层:输入通道数为6,输出通道数为16,卷积核大小为5*5
        self.conv3 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5)
        # 汇聚层:汇聚窗口为2*2,步长为2
        self.pool4 = nn.AvgPool2d(kernel_size=2, stride=2)
        # 卷积层:输入通道数为16,输出通道数为120,卷积核大小为5*5
        self.conv5 = nn.Conv2d(in_channels=16, out_channels=120, kernel_size=5)
        # 全连接层:输入神经元为120,输出神经元为84
        self.linear6 = nn.Linear(in_features=120, out_features=84)
        # 全连接层:输入神经元为84,输出神经元为类别数
        self.linear7 = nn.Linear(in_features=84, out_features=num_classes)

    def forward(self, x):
        # C1:卷积层+激活函数
        output = F.relu(self.conv1(x))
        # S2:汇聚层
        output = self.pool2(output)
        # C3:卷积层+激活函数
        output = F.relu(self.conv3(output))
        # S4:汇聚层
        output = self.pool4(output)
        # C5:卷积层+激活函数
        output = F.relu(self.conv5(output))
        # 输入层将数据拉平[B,C,H,W] -> [B,CxHxW]
        output = torch.squeeze(output, dim=3)
        output = torch.squeeze(output, dim=2)
        # F6:全连接层
        output = F.relu(self.linear6(output))
        # F7:全连接层
        output = self.linear7(output)
        return output

两者运行结果一样,比较两者运行时间

# 计算Model_LeNet类的运算速度
model_time = 0
for i in range(60):
    strat_time = time.time()
    out = model(x)
    end_time = time.time()
    # 预热10次运算,不计入最终速度统计
    if i < 10:
        continue
    model_time += (end_time - strat_time)
avg_model_time = model_time / 50
print('Model_LeNet speed:', avg_model_time, 's')

# 计算Paddle_LeNet类的运算速度
torch_model_time = 0
for i in range(60):
    strat_time = time.time()
    torch_out = torch_LeNet(x)
    end_time = time.time()
    # 预热10次运算,不计入最终速度统计
    if i < 10:
        continue
    torch_model_time += (end_time - strat_time)
avg_torch_model_time = torch_model_time / 50
print('PyTorch_LeNet speed:', avg_torch_model_time, 's')

pytorch框架实现的速度远远大于自定义算子。

令两个网络加载同样的权重,测试一下两个网络的输出结果是一致的。

按照公式(5.18)进行计算,可以得到:

第一个卷积层的参数量为:6×1×5×5+6=1566×1×5×5+6=156;

第二个卷积层的参数量为:16×6×5×5+16=241616×6×5×5+16=2416;

第三个卷积层的参数量为:120×16×5×5+120=48120120×16×5×5+120=48120;

第一个全连接层的参数量为:120×84+84=10164120×84+84=10164;

第二个全连接层的参数量为:84×10+10=85084×10+10=850;

所以,LeNet-5总的参数量为6170661706。

代码运算得出,两者结果一样。

model = Paddle_LeNet(in_channels=1, num_classes=10)
dummy_input = torch.randn(1, 1, 32, 32)
flops, params = profile(model,(dummy_input,))
print(flops)

3.模型训练

使用交叉熵损失函数,并用随机梯度下降法作为优化器来训练LeNet-5网络。 用RunnerV3在训练集上训练5个epoch,并保存准确率最高的模型作为最佳模型。 

训练完整代码

import json
import gzip
import numpy as np
from PIL import Image
from matplotlib import pyplot as plt
import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.optim as opt
import torch.utils.data as data
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms

# 打印并观察数据集分布情况
train_set, dev_set, test_set = json.load(gzip.open('./mnist.json.gz'))
train_images, train_labels = train_set[0][:1000], train_set[1][:1000]
dev_images, dev_labels = dev_set[0][:200], dev_set[1][:200]
test_images, test_labels = test_set[0][:200], test_set[1][:200]
train_set, dev_set, test_set = [train_images, train_labels], [dev_images, dev_labels], [test_images, test_labels]
print(f'训练集/验证集/测试集的样本数量:{len(train_set[0])}/{len(dev_set[0])}/{len(test_set[0])}')
# 数据预处理:使用 Compose 将多个操作组合在一起
transform = transforms.Compose([
    transforms.Resize(32),  # 将图像大小调整为 32x32
    transforms.ToTensor(),  # 转换为 Tensor 格式并归一化到 [0, 1]
    transforms.Normalize(mean=[0.5], std=[0.5])  # 使用0.5作为均值和标准差进行标准化
])
torch.manual_seed(42)
# 自定义 MNIST 数据集类
class MNIST_dataset(Dataset):
    def __init__(self, dataset, transform=None, mode='train'):
        self.mode = mode
        self.transform = transform
        self.dataset = dataset

    def __getitem__(self, idx):
        # 获取图像和标签
        image, label = self.dataset[0][idx], self.dataset[1][idx]

        # 将图像数据转换为 numpy 数组,转换为 float32 类型
        image = np.array(image).astype('float32')

        # 将图像重塑为 28x28 的形状
        image = np.reshape(image, [28, 28])

        # 将 numpy 数组转换为 PIL 图像对象
        image = Image.fromarray(image.astype('uint8'), mode='L')

        # 如果有 transforms,应用 transforms
        if self.transform:
            image = self.transform(image)

        return image, label

    def __len__(self):
        return len(self.dataset[0])
# 创建数据集实例
train_dataset = MNIST_dataset(dataset=train_set, transform=transform, mode='train')
test_dataset = MNIST_dataset(dataset=test_set, transform=transform, mode='test')
dev_dataset = MNIST_dataset(dataset=dev_set, transform=transform, mode='dev')

class PyTorch_LeNet(nn.Module):
    def __init__(self, in_channels, num_classes=10):
        super(PyTorch_LeNet, self).__init__()
        # 卷积层:输出通道数为6,卷积核大小为5*5
        self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=6, kernel_size=5)
        # 汇聚层:汇聚窗口为2*2,步长为2
        self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
        # 卷积层:输入通道数为6,输出通道数为16,卷积核大小为5*5
        self.conv3 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5)
        # 汇聚层:汇聚窗口为2*2,步长为2
        self.pool4 = nn.AvgPool2d(kernel_size=2, stride=2)
        # 卷积层:输入通道数为16,输出通道数为120,卷积核大小为5*5
        self.conv5 = nn.Conv2d(in_channels=16, out_channels=120, kernel_size=5)
        # 全连接层:输入神经元为120,输出神经元为84
        self.linear6 = nn.Linear(in_features=120, out_features=84)
        # 全连接层:输入神经元为84,输出神经元为类别数
        self.linear7 = nn.Linear(in_features=84, out_features=num_classes)
    def forward(self, x):
        # C1:卷积层+激活函数
        output = F.relu(self.conv1(x))
        # S2:汇聚层
        output = self.pool2(output)
        # C3:卷积层+激活函数
        output = F.relu(self.conv3(output))
        # S4:汇聚层
        output = self.pool4(output)
        # C5:卷积层+激活函数
        output = F.relu(self.conv5(output))
        # 输入层将数据拉平[B,C,H,W] -> [B,CxHxW]
        output = torch.squeeze(output, dim=3)
        output = torch.squeeze(output, dim=2)
        # F6:全连接层
        output = F.relu(self.linear6(output))
        # F7:全连接层
        output = self.linear7(output)
        return output
class Accuracy():
    def __init__(self, is_logist=True):
        # 用于统计正确的样本个数
        self.num_correct = 0
        # 用于统计样本的总数
        self.num_count = 0
        self.is_logist = is_logist
    def update(self, outputs, labels):
        if outputs.shape[1] == 1:  # 二分类
            outputs = torch.squeeze(outputs, dim=-1)
            if self.is_logist:
                # logist判断是否大于0
                preds = torch.tensor((outputs >= 0), dtype=torch.float32)
            else:
                # 如果不是logist,判断每个概率值是否大于0.5,当大于0.5时,类别为1,否则类别为0
                preds = torch.tensor((outputs >= 0.5), dtype=torch.float32)
        else:
            # 多分类时,使用'torch.argmax'计算最大元素索引作为类别
            preds = torch.argmax(outputs, dim=1)
        # 获取本批数据中预测正确的样本个数
        labels = torch.squeeze(labels, dim=-1)
        batch_correct = torch.sum((preds == labels).float()).numpy()
        batch_count = len(labels)
        # 更新num_correct 和 num_count
        self.num_correct += batch_correct
        self.num_count += batch_count
    def accumulate(self):
        # 使用累计的数据,计算总的指标
        if self.num_count == 0:
            return 0
        return self.num_correct / self.num_count
    def reset(self):
        # 重置正确的数目和总数
        self.num_correct = 0
        self.num_count = 0
    def name(self):
        return "Accuracy"
class RunnerV3(object):
    def __init__(self, model, optimizer, loss_fn, metric, **kwargs):
        self.model = model
        self.optimizer = optimizer
        self.loss_fn = loss_fn
        self.metric = metric  # 只用于计算评价指标
        # 记录训练过程中的评价指标变化情况
        self.dev_scores = []
        # 记录训练过程中的损失函数变化情况
        self.train_epoch_losses = []  # 一个epoch记录一次loss
        self.train_step_losses = []  # 一个step记录一次loss
        self.dev_losses = []
        # 记录全局最优指标
        self.best_score = 0
    def evaluate(self, dev_loader, global_step=-1):
        # 将模型切换为评估模式
        self.model.eval()
        # 初始化metric用于评估指标
        self.metric.reset()
        total_loss = 0
        with torch.no_grad():  # 禁用梯度计算
            for step, data in enumerate(dev_loader):
                X, y = data
                logits = self.model(X)
                loss = self.loss_fn(logits, y)  # 计算验证集损失
                total_loss += loss.item()
                # 更新评价指标
                self.metric.update(logits, y)
        # 计算平均损失和指标
        avg_loss = total_loss / len(dev_loader)
        score = self.metric.accumulate()
        # 保存验证集的损失和评价指标
        self.dev_losses.append((global_step, avg_loss))
        self.dev_scores.append(score)
        return score, avg_loss
    def save_model(self, save_path):
        torch.save(self.model.state_dict(), save_path)
        print(f"Model saved to {save_path}")
    def load_model(self, save_path):
        # 加载保存的模型权重
        self.model.load_state_dict(torch.load(save_path))
        print(f"Model loaded from {save_path}")
    def train(self, train_loader, dev_loader=None, **kwargs):
        # 将模型切换为训练模式
        self.model.train()
        # 传入训练轮数,如果没有传入值则默认为0
        num_epochs = kwargs.get("num_epochs", 0)
        # 传入log打印频率,如果没有传入值则默认为100
        log_steps = kwargs.get("log_steps", 100)
        # 评价频率
        eval_steps = kwargs.get("eval_steps", 0)
        # 传入模型保存路径,如果没有传入值则默认为"best_model.pdparams"
        save_path = kwargs.get("save_path", "best_model.pdparams")
        custom_print_log = kwargs.get("custom_print_log", None)
        # 训练总的步数
        num_training_steps = num_epochs * len(train_loader)
        if eval_steps:
            if self.metric is None:
                raise RuntimeError('Error: Metric can not be None!')
            if dev_loader is None:
                raise RuntimeError('Error: dev_loader can not be None!')
        # 运行的step数目
        global_step = 0
        # 进行num_epochs轮训练
        for epoch in range(num_epochs):
            # 用于统计训练集的损失
            total_loss = 0
            for step, data in enumerate(train_loader):
                X, y = data
                # 获取模型预测
                logits = self.model(X)
                loss = self.loss_fn(logits, y)  # 默认求mean
                total_loss += loss
                # 训练过程中,每个step的loss进行保存
                self.train_step_losses.append((global_step, loss.item()))
                if log_steps and global_step % log_steps == 0:
                    print(
                        f"[Train] epoch: {epoch}/{num_epochs}, step: {global_step}/{num_training_steps}, loss: {loss.item():.5f}")
                # 梯度反向传播,计算每个参数的梯度值
                loss.backward()
                if custom_print_log:
                    custom_print_log(self)
                # 小批量梯度下降进行参数更新
                self.optimizer.step()
                # 梯度归零
                self.optimizer.zero_grad()
                # 判断是否需要评价
                if eval_steps > 0 and global_step > 0 and \
                        (global_step % eval_steps == 0 or global_step == (num_training_steps - 1)):
                    dev_score, dev_loss = self.evaluate(dev_loader, global_step=global_step)
                    print(f"[Evaluate]  dev score: {dev_score:.5f}, dev loss: {dev_loss:.5f}")
                    # 将模型切换为训练模式
                    self.model.train()
                    # 如果当前指标为最优指标,保存该模型
                    if dev_score > self.best_score:
                        self.save_model(save_path)
                        print(
                            f"[Evaluate] best accuracy performence has been updated: {self.best_score:.5f} --> {dev_score:.5f}")
                        self.best_score = dev_score
                global_step += 1
            # 当前epoch 训练loss累计值
            trn_loss = (total_loss / len(train_loader)).item()
            # epoch粒度的训练loss保存
            self.train_epoch_losses.append(trn_loss)
        print("[Train] Training done!")
# 可视化
def plot(runner, fig_name):
    plt.figure(figsize=(10, 5))

    plt.subplot(1, 2, 1)
    train_items = runner.train_step_losses[::30]
    train_steps = [x[0] for x in train_items]
    train_losses = [x[1] for x in train_items]

    plt.plot(train_steps, train_losses, color='#8E004D', label="Train loss")
    if len(runner.dev_losses) > 0 and runner.dev_losses[0][0] != -1:
        dev_steps = [x[0] for x in runner.dev_losses]
        dev_losses = [x[1] for x in runner.dev_losses]
        plt.plot(dev_steps, dev_losses, color='#E20079', linestyle='--', label="Dev loss")

    plt.ylabel("Loss", fontsize='x-large')
    plt.xlabel("Step", fontsize='x-large')
    plt.legend(loc='upper right', fontsize='x-large')

    plt.subplot(1, 2, 2)
    if len(runner.dev_scores) > 0:
        dev_steps = [x[0] for x in runner.dev_losses]
        plt.plot(dev_steps, runner.dev_scores, color='#E20079', linestyle="--", label="Dev accuracy")
    else:
        plt.plot(list(range(len(runner.dev_scores))), runner.dev_scores, color='#E20079', linestyle="--",
                 label="Dev accuracy")

    plt.ylabel("Accuracy", fontsize='x-large')
    plt.xlabel("Step", fontsize='x-large')
    plt.legend(loc='lower right', fontsize='x-large')

    plt.tight_layout()
    plt.savefig(fig_name)
    plt.show()

batch_size = 64
train_loader = data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True,)
dev_loader = data.DataLoader(dev_dataset, batch_size=batch_size)
test_loader = data.DataLoader(test_dataset, batch_size=batch_size)
model = PyTorch_LeNet(in_channels=1, num_classes=10)
# 定义优化器
lr = 0.3
optimizer = opt.SGD(lr=lr, params=model.parameters())
# 定义损失函数
loss_fn = F.cross_entropy
# 定义评价指标
metric = Accuracy(is_logist=True)
# 实例化 RunnerV3 类,并传入训练配置。
runner = RunnerV3(model, optimizer, loss_fn, metric)
# 启动训练
log_steps = 15
eval_steps = 15
runner.train(train_loader, dev_loader, num_epochs=20, log_steps=log_steps, eval_steps=eval_steps,save_path="best_model.pdparams")
# 加载最优模型
runner.load_model('best_model.pdparams')
# 模型评价
score, loss = runner.evaluate(test_loader)
print("[Test] accuracy/loss: {:.4f}/{:.4f}".format(score, loss))
plot(runner, 'cnn-loss1.pdf')
# 获取测试集中第一条数据
X, label = next(iter(test_loader))  # 获取测试集中一批数据
X = X[0].unsqueeze(0)  # 获取第一条数据并调整维度为 [1, C, H, W]
label = label[0].item()  # 获取第一条数据对应的真实类别

# 模型切换为评估模式
runner.model.eval()
with torch.no_grad():
    # 获取模型预测
    logits = runner.model(X)
    # 多分类,使用 softmax 计算预测概率
    pred_probs = F.softmax(logits, dim=1)
    # 获取概率最大的类别
    pred_class = torch.argmax(pred_probs, dim=1).item()

# 输出真实类别与预测类别
print(f"The true category is {label} and the predicted category is {pred_class}")

# 可视化图片
plt.figure(figsize=(2, 2))
image, true_label = test_set[0][0], test_set[1][0]
image = np.array(image).astype('float32')
image = np.reshape(image, [28, 28])  # 转换为二维
plt.imshow(image, cmap="gray")
plt.axis('off')
plt.title(f"True: {true_label}, Pred: {pred_class}")
plt.savefig('cnn-number2.pdf')
plt.show()

4.模型评价

使用测试数据对在训练过程中保存的最佳模型进行评价,观察模型在测试集上的准确率以及损失变化情况。

# 加载最优模型
runner.load_model('best_model.pdparams')
# 模型评价
score, loss = runner.evaluate(test_loader)
print("[Test] accuracy/loss: {:.4f}/{:.4f}".format(score, loss))

 

5.模型预测

# 获取测试集中第一条数据
X, label = next(iter(test_loader))  # 获取测试集中一批数据
X = X[0].unsqueeze(0)  # 获取第一条数据并调整维度为 [1, C, H, W]
label = label[0].item()  # 获取第一条数据对应的真实类别

# 模型切换为评估模式
runner.model.eval()
with torch.no_grad():
    # 获取模型预测
    logits = runner.model(X)
    # 多分类,使用 softmax 计算预测概率
    pred_probs = F.softmax(logits, dim=1)
    # 获取概率最大的类别
    pred_class = torch.argmax(pred_probs, dim=1).item()

# 输出真实类别与预测类别
print(f"The true category is {label} and the predicted category is {pred_class}")

# 可视化图片
plt.figure(figsize=(2, 2))
image, true_label = test_set[0][0], test_set[1][0]
image = np.array(image).astype('float32')
image = np.reshape(image, [28, 28])  # 转换为二维
plt.imshow(image, cmap="gray")
plt.axis('off')
plt.title(f"True: {true_label}, Pred: {pred_class}")
plt.savefig('cnn-number2.pdf')
plt.show()

 

实验心得

 

实验过程出现了上述错误,发现是读取数据集的问题
引入from torch.utils.data import Dataset得以解决

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值