一、实现一个两层前馈网络
1.输入层接收输入数据,并将其转换为向量形式。
2.向量形式的输入数据将被输入到第一个全连接层,其中每个神经元的输入都是上一层神经元的输出,同时每个神经元都会进行一次非线性的变换。
3.经过第一个全连接层的变换后,数据将被传递到下一个全连接层中,重复上述过程,直到达到输出层。。
4.神经网络将输出一个向量,表示模型对输入数据的预测结果。
import math
from abc import abstractmethod
import os
import torch
import matplotlib.pyplot as plt
def make_moons(n_samples=1000, shuffle=True, noise=None):
"""生成带噪音的弯月形状数据
输入:n_samples:数据量大小,数据类型为int shuffle:是否打乱数据,数据类型为bool noise:以多大的程度增加噪声,数据类型为None或float,noise为None时表示不增加噪声
输出:X:特征数据,shape=[n_samples,2] y:标签数据, shape=[n_samples]
"""
n_samples_out = n_samples // 2
n_samples_in = n_samples - n_samples_out
# 采集第1类数据,特征为(x,y)
# 使用'torch.linspace'在0到pi上均匀取n_samples_out个值
# 使用'torch.cos'计算上述取值的余弦值作为特征1,使用'torch.sin'计算上述取值的正弦值作为特征2
outer_circ_x = torch.cos(torch.linspace(0, math.pi, n_samples_out))
outer_circ_y = torch.sin(torch.linspace(0, math.pi, n_samples_out))
inner_circ_x = 1 - torch.cos(torch.linspace(0, math.pi, n_samples_in))
inner_circ_y = 0.5 - torch.sin(torch.linspace(0, math.pi, n_samples_in))
print('outer_circ_x.shape:', outer_circ_x.shape, 'outer_circ_y.shape:', outer_circ_y.shape)
print('inner_circ_x.shape:', inner_circ_x.shape, 'inner_circ_y.shape:', inner_circ_y.shape)
# 使用'torch.concat'将两类数据的特征1和特征2分别延维度0拼接在一起,得到全部特征1和特征2
# 使用'torch.stack'将两类特征延维度1堆叠在一起
X = torch.stack(
[torch.concat([outer_circ_x, inner_circ_x]),
torch.concat([outer_circ_y, inner_circ_y])],
dim=1 # 确定在哪个维度拼接
)
print('after concat shape:', torch.concat([outer_circ_x, inner_circ_x]).shape)
print('X shape:', X.shape)
# 使用'paddle. zeros'将第一类数据的标签全部设置为0
# 使用'paddle. ones'将第一类数据的标签全部设置为1
y = torch.concat(
[torch.zeros([n_samples_out]), torch.ones([n_samples_in])]
)
print('y shape:', y.shape)
# 如果shuffle为True,将所有数据打乱
if shuffle:
# 使用'torch.randperm'生成一个数值在0到X.shape[0],随机排列的一维Tensor做索引值,用于打乱数据
idx = torch.randperm(X.shape[0])
X = X[idx]
y = y[idx]
# 如果noise不为None,则给特征值加入噪声
if noise is not None:
# 使用'torch.normal'生成符合正态分布的随机Tensor作为噪声,并加到原始特征上
X += torch.normal(mean=torch.zeros_like(X), std=noise * torch.ones_like(X))
return X, y
# 采样1000个样本
n_samples = 1000
X, y = make_moons(n_samples=n_samples, shuffle=True, noise=0.18)
num_train = 640
num_dev = 160
num_test = 200
X_train, y_train = X[:num_train], y[:num_train]
X_dev, y_dev = X[num_train:num_train + num_dev], y[num_train:num_train + num_dev]
X_test, y_test = X[num_train + num_dev:], y[num_train + num_dev:]
y_train = y_train.reshape([-1,1])
y_dev = y_dev.reshape([-1,1])
y_test = y_test.reshape([-1,1])
class Op(object):
def __init__(self):
pass
def __call__(self, inputs):
return self.forward(inputs)
def forward(self, inputs):
raise NotImplementedError
def backward(self, inputs):
raise NotImplementedError
class Logistic(Op):
def __init__(self):
self.inputs = None
self.outputs = None
def forward(self, inputs):
"""
输入:inputs: shape=[N,D]
输出:outputs:shape=[N,D]
"""
outputs = 1.0 / (1.0 + torch.exp(-inputs))
self.outputs = outputs
return outputs
class Linear(Op):
def __init__(self, input_size, output_size, name, weight_init=torch.randn, bias_init=torch.zeros):
"""
输入: input_size:输入数据维度
- output_size:输出数据维度
- name:算子名称
- weight_init:权重初始化方式,默认使用'torch.randn'进行随机初始化
- bias_init:偏置初始化方式,默认使用全0初始化
"""
self.params = {}
# 初始化权重
self.params['W'] = weight_init(input_size, output_size)
# 初始化偏置
self.params['b'] = bias_init(1, output_size)
self.inputs = None
self.name = name
def forward(self, inputs):
"""
输入:inputs:shape=[N,input_size], N是样本数量
输出: outputs:预测值,shape=[N,output_size]
"""
self.inputs = inputs
outputs = torch.matmul(self.inputs, self.params['W']) + self.params['b']
return outputs
class Model_MLP_L2(Op):
def __init__(self, input_size, hidden_size, output_size):
"""
输入:
- input_size:输入维度
- hidden_size:隐藏层神经元数量
- output_size:输出维度
"""
self.fc1 = Linear(input_size, hidden_size, name="fc1")
self.act_fn1 = Logistic()
self.fc2 = Linear(hidden_size, output_size, name="fc2")
self.act_fn2 = Logistic()
def __call__(self, X):
return self.forward(X)
def forward(self, X):
"""
输入:X:shape=[N,input_size], N是样本数量
输出:a2:预测值,shape=[N,output_size]
"""
z1 = self.fc1(X)
a1 = self.act_fn1(z1)
z2 = self.fc2(a1)
a2 = self.act_fn2(z2)
return a2
# 实例化模型
model = Model_MLP_L2(input_size=5, hidden_size=10, output_size=1)
X=torch.rand(1, 5)
result = model(X)
print ("result: ", result)
运行结果为
二、定义Logistic算子(激活函数),Linear算子(线性层)
定义了神经层的线性层算子和激活函数算子之后,我们可以不断交叉重复使用它们来构建一个多层的神经网络,可以更高效的构建神经网络模型。
1. Linear算子(线性层)
Linear 类实现了对输入数据的线性变换,输出是输入与权重矩阵的乘积加上偏置。保存了权重(W)和偏置(b),并在反向传播过程中计算这些参数的梯度。
2. Logistic算子(激活函数)
Logistic 类实现了Sigmoid激活函数,将线性层的输出进行非线性变换,使得神经网络能够进行学习复杂的特征。 Sigmoid函数的输出范围在0到1之间,适用于二分类问题。
三、反向传播算法
神经网络的参数主要是通过梯度下降法进行优化的,因此需要计算最终损失对每个参数的梯度。
前馈神经网络的参数梯度通常使用误差反向传播算法来计算。
前向传播
反向传播
四、完善Runner类:RunnerV2_1
加入功能
支持自定义算子的梯度计算,在训练过程中调用self.loss_fn.backward()从损失函数开始反向计算梯度;每层的模型保存和加载,将每一层的参数分别进行保存和加载。
简化了复杂模型的调试过程,模型变得更加灵活,便于恢复训练。
五、代码实现
import math
from abc import abstractmethod
import os
import torch
import matplotlib.pyplot as plt
def make_moons(n_samples=1000, shuffle=True, noise=None):
"""生成带噪音的弯月形状数据
输入:n_samples:数据量大小,数据类型为int shuffle:是否打乱数据,数据类型为bool noise:以多大的程度增加噪声,数据类型为None或float,noise为None时表示不增加噪声
输出:X:特征数据,shape=[n_samples,2] y:标签数据, shape=[n_samples]
"""
n_samples_out = n_samples // 2
n_samples_in = n_samples - n_samples_out
# 采集第1类数据,特征为(x,y)
# 使用'torch.linspace'在0到pi上均匀取n_samples_out个值
# 使用'torch.cos'计算上述取值的余弦值作为特征1,使用'torch.sin'计算上述取值的正弦值作为特征2
outer_circ_x = torch.cos(torch.linspace(0, math.pi, n_samples_out))
outer_circ_y = torch.sin(torch.linspace(0, math.pi, n_samples_out))
inner_circ_x = 1 - torch.cos(torch.linspace(0, math.pi, n_samples_in))
inner_circ_y = 0.5 - torch.sin(torch.linspace(0, math.pi, n_samples_in))
print('outer_circ_x.shape:', outer_circ_x.shape, 'outer_circ_y.shape:', outer_circ_y.shape)
print('inner_circ_x.shape:', inner_circ_x.shape, 'inner_circ_y.shape:', inner_circ_y.shape)
# 使用'torch.concat'将两类数据的特征1和特征2分别延维度0拼接在一起,得到全部特征1和特征2
# 使用'torch.stack'将两类特征延维度1堆叠在一起
X = torch.stack(
[torch.concat([outer_circ_x, inner_circ_x]),
torch.concat([outer_circ_y, inner_circ_y])],
dim=1 # 确定在哪个维度拼接
)
print('after concat shape:', torch.concat([outer_circ_x, inner_circ_x]).shape)
print('X shape:', X.shape)
# 使用'paddle. zeros'将第一类数据的标签全部设置为0
# 使用'paddle. ones'将第一类数据的标签全部设置为1
y = torch.concat(
[torch.zeros([n_samples_out]), torch.ones([n_samples_in])]
)
print('y shape:', y.shape)
# 如果shuffle为True,将所有数据打乱
if shuffle:
# 使用'torch.randperm'生成一个数值在0到X.shape[0],随机排列的一维Tensor做索引值,用于打乱数据
idx = torch.randperm(X.shape[0])
X = X[idx]
y = y[idx]
# 如果noise不为None,则给特征值加入噪声
if noise is not None:
# 使用'torch.normal'生成符合正态分布的随机Tensor作为噪声,并加到原始特征上
X += torch.normal(mean=torch.zeros_like(X), std=noise * torch.ones_like(X))
return X, y
class Op(object):
def __init__(self):
pass
def __call__(self, inputs):
return self.forward(inputs)
def forward(self, inputs):
raise NotImplementedError
def backward(self, inputs):
raise NotImplementedError
class Logistic(Op):
def __init__(self):
self.inputs = None
self.outputs = None
def forward(self, inputs):
"""
输入:inputs: shape=[N,D]
输出:outputs:shape=[N,D]
"""
outputs = 1.0 / (1.0 + torch.exp(-inputs))
self.outputs = outputs
return outputs
# 实现交叉熵损失函数
class BinaryCrossEntropyLoss(Op):
def __init__(self, model):
self.predicts = None
self.labels = None
self.num = None
self.model = model
def __call__(self, predicts, labels):
return self.forward(predicts, labels)
def forward(self, predicts, labels):
"""
输入:predicts:预测值,shape=[N, 1],N为样本数量
labels:真实标签,shape=[N, 1]
输出: 损失值:shape=[1]
"""
self.predicts = predicts
self.labels = labels
self.num = self.predicts.shape[0]
loss = -1. / self.num * (torch.matmul(self.labels.t(), torch.log(self.predicts))+ torch.matmul((1 - self.labels.t()), torch.log(1 - self.predicts)))
loss = torch.squeeze(loss,dim=1)
return loss
def backward(self):
# 计算损失函数对模型预测的导数
loss_grad_predicts = -1.0 * (self.labels / self.predicts - (1 - self.labels) / (1 - self.predicts)) / self.num
# 梯度反向传播
self.model.backward(loss_grad_predicts)
class Logistic(Op):
def __init__(self):
self.inputs = None
self.outputs = None
self.params = None
def forward(self, inputs):
outputs = 1.0 / (1.0 + torch.exp(-inputs))
self.outputs = outputs
return outputs
def backward(self, grads):
# 计算Logistic激活函数对输入的导数
outputs_grad_inputs = torch.multiply(self.outputs, (1.0 - self.outputs))
return torch.multiply(grads,outputs_grad_inputs)
class Linear(Op):
def __init__(self, input_size, output_size, name, weight_init=torch.randn, bias_init=torch.zeros):
self.params = {}
self.params['W'] = weight_init(input_size, output_size)
self.params['b'] = bias_init(1, output_size)
self.inputs = None
self.grads = {}
self.name = name
def forward(self, inputs):
self.inputs = inputs
outputs = torch.matmul(self.inputs, self.params['W']) + self.params['b']
return outputs
def backward(self, grads):
"""
输入: grads:损失函数对当前层输出的导数
输出: 损失函数对当前层输入的导数
"""
self.grads['W'] = torch.matmul(self.inputs.T, grads)
self.grads['b'] = torch.sum(grads, dim=0)
# 线性层输入的梯度
return torch.matmul(grads, self.params['W'].T)
class Model_MLP_L2(Op):
def __init__(self, input_size, hidden_size, output_size):
# 线性层
self.fc1 = Linear(input_size, hidden_size, name="fc1")
# Logistic激活函数层
self.act_fn1 = Logistic()
self.fc2 = Linear(hidden_size, output_size, name="fc2")
self.act_fn2 = Logistic()
self.layers = [self.fc1, self.act_fn1, self.fc2, self.act_fn2]
def __call__(self, X):
return self.forward(X)
# 前向计算
def forward(self, X):
z1 = self.fc1(X)
a1 = self.act_fn1(z1)
z2 = self.fc2(a1)
a2 = self.act_fn2(z2)
return a2
# 反向计算
def backward(self, loss_grad_a2):
loss_grad_z2 = self.act_fn2.backward(loss_grad_a2)
loss_grad_a1 = self.fc2.backward(loss_grad_z2)
loss_grad_z1 = self.act_fn1.backward(loss_grad_a1)
loss_grad_inputs = self.fc1.backward(loss_grad_z1)
class Optimizer(object):
def __init__(self, init_lr, model):
"""优化器类初始化"""
# 初始化学习率,用于参数更新的计算
self.init_lr = init_lr
# 指定优化器需要优化的模型
self.model = model
@abstractmethod
def step(self):
"""定义每次迭代如何更新参数"""
pass
class BatchGD(Optimizer):
def __init__(self, init_lr, model):
super(BatchGD, self).__init__(init_lr=init_lr, model=model)
def step(self):
# 参数更新
for layer in self.model.layers: # 遍历所有层
if isinstance(layer.params, dict):
for key in layer.params.keys():
layer.params[key] = layer.params[key] - self.init_lr * layer.grads[key]
class RunnerV2_1(object):
def __init__(self, model, optimizer, metric, loss_fn, **kwargs):
self.model = model
self.optimizer = optimizer
self.loss_fn = loss_fn
self.metric = metric
# 记录训练过程中的评估指标变化情况
self.train_scores = []
self.dev_scores = []
# 记录训练过程中的评价指标变化情况
self.train_loss = []
self.dev_loss = []
def train(self, train_set, dev_set, **kwargs):
# 传入训练轮数,如果没有传入值则默认为0
num_epochs = kwargs.get("num_epochs", 0)
# 传入log打印频率,如果没有传入值则默认为100
log_epochs = kwargs.get("log_epochs", 100)
# 传入模型保存路径
save_dir = kwargs.get("save_dir", None)
# 记录全局最优指标
best_score = 0
# 进行num_epochs轮训练
for epoch in range(num_epochs):
X, y = train_set
# 获取模型预测
logits = self.model(X)
# 计算交叉熵损失
trn_loss = self.loss_fn(logits, y) # return a tensor
self.train_loss.append(trn_loss.item())
# 计算评估指标
trn_score = self.metric(logits, y).item()
self.train_scores.append(trn_score)
self.loss_fn.backward()
# 参数更新
self.optimizer.step()
dev_score, dev_loss = self.evaluate(dev_set)
# 如果当前指标为最优指标,保存该模型
if dev_score > best_score:
print(f"[Evaluate] best accuracy performence has been updated: {best_score:.5f} --> {dev_score:.5f}")
best_score = dev_score
if save_dir:
self.save_model(save_dir)
if log_epochs and epoch % log_epochs == 0:
print(f"[Train] epoch: {epoch}/{num_epochs}, loss: {trn_loss.item()}")
def evaluate(self, data_set):
X, y = data_set
# 计算模型输出
logits = self.model(X)
# 计算损失函数
loss = self.loss_fn(logits, y).item()
self.dev_loss.append(loss)
# 计算评估指标
score = self.metric(logits, y).item()
self.dev_scores.append(score)
return score, loss
def predict(self, X):
return self.model(X)
def save_model(self, save_dir):
# 对模型每层参数分别进行保存,保存文件名称与该层名称相同
for layer in self.model.layers: # 遍历所有层
if isinstance(layer.params, dict):
torch.save(layer.params, os.path.join(save_dir, layer.name+".pdparams"))
def load_model(self, model_dir):
# 获取所有层参数名称和保存路径之间的对应关系
model_file_names = os.listdir(model_dir)
name_file_dict = {}
for file_name in model_file_names:
name = file_name.replace(".pdparams", "")
name_file_dict[name] = os.path.join(model_dir, file_name)
# 加载每层参数
for layer in self.model.layers: # 遍历所有层
if isinstance(layer.params, dict):
name = layer.name
file_path = name_file_dict[name]
layer.params = torch.load(file_path)
def accuracy(preds, labels):
"""
输入:preds:预测值,二分类时,shape=[N, 1],N为样本数量,多分类时,shape=[N, C],C为类别数量
labels:真实标签,shape=[N, 1]
输出:准确率:shape=[1]
"""
# 判断是二分类任务还是多分类任务,preds.shape[1]=1时为二分类任务,preds.shape[1]>1时为多分类任务
if preds.shape[1] == 1:
# 二分类时,判断每个概率值是否大于0.5,当大于0.5时,类别为1,否则类别为0
# 使用'torch.cast'将preds的数据类型转换为float32类型
preds = (preds >= 0.5).float()
else:
# 多分类时,使用'torch.argmax'计算最大元素索引作为类别
preds = torch.argmax(preds, 1)
accuracy = torch.mean((preds == labels).float())
return accuracy
# 采样1000个样本
n_samples = 1000
X, y = make_moons(n_samples=n_samples, shuffle=True, noise=0.18)
num_train = 640
num_dev = 160
num_test = 200
X_train, y_train = X[:num_train], y[:num_train]
X_dev, y_dev = X[num_train:num_train + num_dev], y[num_train:num_train + num_dev]
X_test, y_test = X[num_train + num_dev:], y[num_train + num_dev:]
y_train = y_train.reshape([-1,1])
y_dev = y_dev.reshape([-1,1])
y_test = y_test.reshape([-1,1])
epoch_num = 1000
model_saved_dir = "model"
# 输入层维度为2
input_size = 2
# 隐藏层维度为5
hidden_size = 5
# 输出层维度为1
output_size = 1
# 定义网络
model = Model_MLP_L2(input_size=input_size, hidden_size=hidden_size, output_size=output_size)
# 损失函数
loss_fn = BinaryCrossEntropyLoss(model)
# 优化器
learning_rate = 0.2
optimizer = BatchGD(learning_rate, model)
# 评价方法
metric = accuracy
# 实例化RunnerV2_1类,并传入训练配置
runner = RunnerV2_1(model, optimizer, metric, loss_fn)
runner.train([X_train, y_train], [X_dev, y_dev], num_epochs=epoch_num, log_epochs=50, save_dir=model_saved_dir)
# 打印训练集和验证集的损失
plt.figure()
plt.plot(range(epoch_num), runner.train_loss, color="#8E004D", label="Train loss")
plt.plot(range(epoch_num), runner.dev_loss, color="#E20079", linestyle='--', label="Dev loss")
plt.xlabel("epoch", fontsize='x-large')
plt.ylabel("loss", fontsize='x-large')
plt.legend(fontsize='large')
plt.savefig('fw-loss2.pdf')
plt.show()
# 加载训练好的模型
runner.load_model(model_saved_dir)
# 在测试集上对模型进行评价
score, loss = runner.evaluate([X_test, y_test])
print("[Test] score/loss: {:.4f}/{:.4f}".format(score, loss))
epoch_num = 1000
model_saved_dir = "model"
# 输入层维度为2
input_size = 2
# 隐藏层维度为5
hidden_size = 5
# 输出层维度为1
output_size = 1
# 定义网络
model = Model_MLP_L2(input_size=input_size, hidden_size=hidden_size, output_size=output_size)
# 损失函数
loss_fn = BinaryCrossEntropyLoss(model)
# 优化器
learning_rate = 0.2
optimizer = BatchGD(learning_rate, model)
# 评价方法
metric = accuracy
# 实例化RunnerV2_1类,并传入训练配置
runner = RunnerV2_1(model, optimizer, metric, loss_fn)
runner.train([X_train, y_train], [X_dev, y_dev], num_epochs=epoch_num, log_epochs=50, save_dir=model_saved_dir)
# 加载训练好的模型
runner.load_model(model_saved_dir)
# 在测试集上对模型进行评价
score, loss = runner.evaluate([X_test, y_test])
print("[Test] score/loss: {:.4f}/{:.4f}".format(score, loss))
# 均匀生成40000个数据点
x1, x2 = torch.meshgrid(torch.linspace(-math.pi, math.pi, 200), torch.linspace(-math.pi, math.pi, 200),indexing = 'ij')
x = torch.stack([torch.flatten(x1), torch.flatten(x2)], dim=1)
# 预测对应类别
y = runner.predict(x)
y = (y >= 0.5).float().squeeze(dim=-1)
# 绘制类别区域
plt.ylabel('x2')
plt.xlabel('x1')
plt.scatter(x[:,0].tolist(), x[:,1].tolist(), c=y.tolist(), cmap=plt.cm.Spectral)
plt.scatter(X_train[:, 0].tolist(), X_train[:, 1].tolist(), marker='*', c=torch.squeeze(y_train,dim=-1).tolist())
plt.scatter(X_dev[:, 0].tolist(), X_dev[:, 1].tolist(), marker='*', c=torch.squeeze(y_dev,dim=-1).tolist())
plt.scatter(X_test[:, 0].tolist(), X_test[:, 1].tolist(), marker='*', c=torch.squeeze(y_test,dim=-1).tolist())
plt.show()
运行结果
基于Logistic回归的二分类任务的结果
思考:
观察得知,前馈神经网络的二分类任务比基于Logistic回归的二分类任务效果好
Logistic回归是一个单层的线性模型,其表示能力有限。它只能够通过少数的特征线性组合来进行决策。神经网络通过多个隐藏层和激活函数引入非线性,使得每一层的输出不仅依赖于前一层的线性组合,还加入了非线性变换。因此它可以更好地捕捉输入特征之间复杂的非线性关系,而不仅仅是线性关系。所以在处理复杂的数据中,神经网络更有优势。Logistic回归通过Sigmoid函数将结果映射到0-1之间。Sigmoid函数也可以作为神经网络中的激活函数,神经网络可以看成好多个Logistic回归。