神经网络与深度学习实验四线性分类

一.基于Logistic回归的二分类任务
数据来自带噪音的两个弯月形状函数,每个弯月对一个类别。采集1000条样本,每个样本包含2个特征。随机采集1000个样本,并进行可视化。将1000条样本数据拆分成训练集、验证集和测试集,其中训练集640条、验证集160条、测试集200条。

(依据神经网络与深度学习:案例与实践》这本书来写,大部分代码源自于书上

import math
import copy
import torch
import matplotlib.pyplot as plt
from abc import abstractmethod
# 固定随机种子,保持每次运行结果一致
torch.seed()
# 生成数据集
def make_moons(n_samples=1000, shuffle=True, noise=None):
    """生成带噪音的弯月形状数据
    输入:n_samples:数据量大小,数据类型为int shuffle:是否打乱数据,数据类型为bool noise:以多大的程度增加噪声,数据类型为None或float,noise为None时表示不增加噪声
    输出:X:特征数据,shape=[n_samples,2] y:标签数据, shape=[n_samples]
    """
    n_samples_out = n_samples // 2
    n_samples_in = n_samples - n_samples_out
    # 采集第1类数据,特征为(x,y)
    # 使用'torch.linspace'在0到pi上均匀取n_samples_out个值
    # 使用'torch.cos'计算上述取值的余弦值作为特征1,使用'torch.sin'计算上述取值的正弦值作为特征2
    outer_circ_x = torch.cos(torch.linspace(0, math.pi, n_samples_out))
    outer_circ_y = torch.sin(torch.linspace(0, math.pi, n_samples_out))

    inner_circ_x = 1 - torch.cos(torch.linspace(0, math.pi, n_samples_in))
    inner_circ_y = 0.5 - torch.sin(torch.linspace(0, math.pi, n_samples_in))

    print('outer_circ_x.shape:', outer_circ_x.shape, 'outer_circ_y.shape:', outer_circ_y.shape)
    print('inner_circ_x.shape:', inner_circ_x.shape, 'inner_circ_y.shape:', inner_circ_y.shape)
    # 使用'torch.concat'将两类数据的特征1和特征2分别延维度0拼接在一起,得到全部特征1和特征2
    # 使用'torch.stack'将两类特征延维度1堆叠在一起
    X = torch.stack(
        [torch.concat([outer_circ_x, inner_circ_x]),
         torch.concat([outer_circ_y, inner_circ_y])],
        dim=1  # 确定在哪个维度拼接
    )
    print('after concat shape:', torch.concat([outer_circ_x, inner_circ_x]).shape)
    print('X shape:', X.shape)
    # 使用'paddle. zeros'将第一类数据的标签全部设置为0
    # 使用'paddle. ones'将第一类数据的标签全部设置为1
    y = torch.concat(
        [torch.zeros([n_samples_out]), torch.ones([n_samples_in])]
    )
    print('y shape:', y.shape)
    # 如果shuffle为True,将所有数据打乱
    if shuffle:
        # 使用'torch.randperm'生成一个数值在0到X.shape[0],随机排列的一维Tensor做索引值,用于打乱数据
        idx = torch.randperm(X.shape[0])
        X = X[idx]
        y = y[idx]
    # 如果noise不为None,则给特征值加入噪声
    if noise is not None:
        # 使用'torch.normal'生成符合正态分布的随机Tensor作为噪声,并加到原始特征上
        X += torch.normal(mean=torch.zeros_like(X), std=noise * torch.ones_like(X))
    return X, y
# 激活函数
def logistic(x):
    return 1 / (1 + torch.exp(-x))

def decision_boundary(w, b, x1):
    w1, w2 = w
    x2 = (- w1 * x1 - b) / w2
    return x2
class Op(object):
    def __init__(self):
        pass

    def __call__(self, inputs):
        return self.forward(inputs)

    def forward(self, inputs):
        raise NotImplementedError

    def backward(self, inputs):
        raise NotImplementedError
class model_LR(Op):
    def __init__(self, input_dim):
        super(model_LR, self).__init__()
        # 存放线性层参数
        self.params = {}
        # 将线性层的权重参数全部初始化为0
        self.params['w'] = torch.zeros(size=[input_dim, 1])
        self.params['w'] = torch.normal(mean=0, std=0.01, size=[input_dim, 1])# 初始化权重的值服从均值为 0,标准差为 0.01 的正态分布
        # 将线性层的偏置参数初始化为0
        self.params['b'] = torch.zeros(size=[1])
        # 存放参数的梯度
        self.grads = {}
        self.X = None
        self.outputs = None

    def __call__(self, inputs):
        return self.forward(inputs)

    def forward(self, inputs):
        self.X = inputs
        # 线性计算
        score = torch.matmul(inputs, self.params['w']) + self.params['b']
        # Logistic 函数
        self.outputs = logistic(score)
        return self.outputs

    def backward(self, labels):
        """
        输入:labels:真实标签,shape=[N, 1]
        """
        N = labels.shape[0]
        # 计算偏导数
        self.grads['w'] = -1 / N * torch.matmul(self.X.t(), (labels - self.outputs))
        self.grads['b'] = -1 / N * torch.sum(labels - self.outputs)
class BinaryCrossEntropyLoss(torch.nn.Module):
    def __init__(self):
        self.predicts = None
        self.labels = None
        self.num = None

    def __call__(self, predicts, labels):
        return self.forward(predicts, labels)

    def forward(self, predicts, labels):
        """
        输入:predicts:预测值,shape=[N, 1],N为样本数量
            labels:真实标签,shape=[N, 1]
        输出:损失值:shape=[1]
        """
        self.predicts = predicts
        self.labels = labels
        self.num = self.predicts.shape[0]
        loss = -1. / self.num * ( torch.matmul(self.labels.t(), torch.log(self.predicts)) + torch.matmul((1 - self.labels.t()),torch.log(1 - self.predicts)))
        loss = torch.squeeze(loss, 1)
        return loss
class model_LR(Op):
    def __init__(self, input_dim):
        super(model_LR, self).__init__()
        # 存放线性层参数
        self.params = {}
        # 将线性层的权重参数全部初始化为0
        self.params['w'] = torch.zeros(size=[input_dim, 1])
        # self.params['w'] = torch.normal(mean=0, std=0.01, shape=[input_dim, 1])
        # 将线性层的偏置参数初始化为0
        self.params['b'] = torch.zeros(size=[1])
        # 存放参数的梯度
        self.grads = {}
        self.X = None
        self.outputs = None

    def __call__(self, inputs):
        return self.forward(inputs)

    def forward(self, inputs):
        self.X = inputs
        # 线性计算
        score = torch.matmul(inputs, self.params['w']) + self.params['b']
        # Logistic 函数
        self.outputs = logistic(score)
        return self.outputs

    def backward(self, labels):
        """
        输入: labels:真实标签,shape=[N, 1]
        """
        N = labels.shape[0]
        # 计算偏导数
        self.grads['w'] = -1 / N * torch.matmul(self.X.t(), (labels - self.outputs))
        self.grads['b'] = -1 / N * torch.sum(labels - self.outputs)
# 优化器基类
class Optimizer(object):
    def __init__(self, init_lr, model):
        """优化器类初始化"""
        # 初始化学习率,用于参数更新的计算
        self.init_lr = init_lr
        # 指定优化器需要优化的模型
        self.model = model

    @abstractmethod
    def step(self):
        """定义每次迭代如何更新参数"""
        pass
class SimpleBatchGD(Optimizer):
    def __init__(self, init_lr, model):
        super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)
    def step(self):
        # 参数更新
        # 遍历所有参数
        if isinstance(self.model.params, dict):
            for key in self.model.params.keys():
                self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]
def accuracy(preds, labels):
    """
    输入: preds:预测值,二分类时,shape=[N, 1],N为样本数量,多分类时,shape=[N, C],C为类别数量
        labels:真实标签,shape=[N, 1]
    输出:准确率:shape=[1]
    """
    # 判断是二分类任务还是多分类任务,preds.shape[1]=1时为二分类任务,preds.shape[1]>1时为多分类任务
    if preds.shape[1] == 1:
        # 二分类时,判断每个概率值是否大于0.5,当大于0.5时,类别为1,否则类别为0
        # 使用'torch.cast'将preds的数据类型转换为float32类型
        preds = (preds >= 0.5).float()
    else:
        # 多分类时,使用'torch.argmax'计算最大元素索引作为类别
        preds = torch.argmax(preds, 1)
    accuracy = torch.mean((preds == labels).float())
    return accuracy
# 用RunnerV2类封装整个训练过程,最速下降法
class RunnerV2(object):
    def __init__(self, model, optimizer, metric, loss_fn):
        self.model = model
        self.optimizer = optimizer
        self.loss_fn = loss_fn
        self.metric = metric
        # 记录训练过程中的评价指标变化情况
        self.train_scores = []
        self.dev_scores = []
        # 记录训练过程中的损失函数变化情况
        self.train_loss = []
        self.dev_loss = []

    def train(self, train_set, dev_set, **kwargs):
        # 传入训练轮数,如果没有传入值则默认为0
        num_epochs = kwargs.get("num_epochs", 0)
        # 传入log打印频率,如果没有传入值则默认为100
        log_epochs = kwargs.get("log_epochs", 100)
        # 传入模型保存路径,如果没有传入值则默认为"best_model.pdparams"
        save_path = kwargs.get("save_path", "best_model.pdparams")
        # 梯度打印函数,如果没有传入则默认为"None"
        print_grads = kwargs.get("print_grads", None)
        # 记录全局最优指标
        best_score = 0
        # 进行num_epochs轮训练
        for epoch in range(num_epochs):
            X, y = train_set
            # 获取模型预测
            logits = self.model(X)
            # 计算交叉熵损失
            trn_loss = self.loss_fn(logits, y).item()
            self.train_loss.append(trn_loss)
            # 计算评价指标
            trn_score = self.metric(logits, y).item()
            self.train_scores.append(trn_score)
            # 计算参数梯度
            self.model.backward(y)
            if print_grads is not None:
                # 打印每一层的梯度
                print_grads(self.model)
            # 更新模型参数
            self.optimizer.step()
            dev_score, dev_loss = self.evaluate(dev_set)
            # 如果当前指标为最优指标,保存该模型
            if dev_score > best_score:
                self.save_model(save_path)
                print(f"best accuracy performence has been updated: {best_score:.5f} --> {dev_score:.5f}")
                best_score = dev_score
            if epoch % log_epochs == 0:
                print(f"[Train] epoch: {epoch}, loss: {trn_loss}, score: {trn_score}")
                print(f"[Dev] epoch: {epoch}, loss: {dev_loss}, score: {dev_score}")

    def evaluate(self, data_set):
        X, y = data_set
        # 计算模型输出
        logits = self.model(X)
        # 计算损失函数
        loss = self.loss_fn(logits, y).item()
        self.dev_loss.append(loss)
        # 计算评价指标
        score = self.metric(logits, y).item()
        self.dev_scores.append(score)
        return score, loss
    def predict(self, X):
        return self.model(X)
    def save_model(self, save_path):
        torch.save(self.model.params, save_path)
    def load_model(self, model_path):
        self.model.params = torch.load(model_path)

# 可视化观察训练集与验证集的指标变化情况
def plot(runner, fig_name):
    plt.figure(figsize=(10, 5))
    plt.subplot(1, 2, 1)
    epochs = [i for i in range(len(runner.train_scores))]
    # 绘制训练损失变化曲线
    plt.plot(epochs, runner.train_loss, color='#e4007f', label="Train loss")
    # 绘制评价损失变化曲线
    plt.plot(epochs, runner.dev_loss, color='#f19ec2', linestyle='--', label="Dev loss")
    # 绘制坐标轴和图例
    plt.ylabel("loss", fontsize='large')
    plt.xlabel("epoch", fontsize='large')
    plt.legend(loc='upper right', fontsize='x-large')
    plt.subplot(1, 2, 2)
    # 绘制训练准确率变化曲线
    plt.plot(epochs, runner.train_scores, color='#e4007f', label="Train accuracy")
    # 绘制评价准确率变化曲线
    plt.plot(epochs, runner.dev_scores, color='#f19ec2', linestyle='--', label="Dev accuracy")
    # 绘制坐标轴和图例
    plt.ylabel("score", fontsize='large')
    plt.xlabel("epoch", fontsize='large')
    plt.legend(loc='lower right', fontsize='x-large')
    plt.tight_layout()
    plt.savefig(fig_name)
    plt.show()

# 在[-10,10]的范围内生成一系列的输入值,用于绘制函数曲线
x = torch.linspace(-10, 10, 10000)
plt.figure()
plt.plot(x.tolist(), logistic(x).tolist(), color="#E20079", label="Logistic Function")
# 设置坐标轴
ax = plt.gca()
# 取消右侧和上侧坐标轴
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
# 设置默认的x轴和y轴方向
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
# 设置坐标原点为(0,0)
ax.spines['left'].set_position(('data', 0))
ax.spines['bottom'].set_position(('data', 0))
# 添加图例
plt.legend()
plt.savefig('linear-logistic.pdf')
plt.show()

n_samples = 1000
X, y = make_moons(n_samples=n_samples, shuffle=True, noise=0.18)
# 可视化生产的数据集,不同颜色代表不同类别
plt.figure(figsize=(5, 5))
plt.scatter(x=X[:, 0].tolist(), y=X[:, 1].tolist(), marker='*', c=y.tolist())
plt.xlim(-3, 4)
plt.ylim(-3, 4)
plt.savefig('linear-dataset-vis.pdf')
plt.show()
# 划分训练集测试集验证集
num_train = 640
num_dev = 160
num_test = 200

X_train, y_train = X[:num_train], y[:num_train]
X_dev, y_dev = X[num_train:num_train + num_dev], y[num_train:num_train + num_dev]
X_test, y_test = X[num_train + num_dev:], y[num_train + num_dev:]

y_train = y_train.reshape([-1, 1])
y_dev = y_dev.reshape([-1, 1])
y_test = y_test.reshape([-1, 1])

# 随机生成3条长度为4的数据
inputs = torch.randn([3, 4])
print('Input is:', inputs)
# 实例化模型
model = model_LR(4)
outputs = model(inputs)
print('Output is:', outputs)

labels = torch.ones(3, 1)
# 计算风险函数
bce_loss = BinaryCrossEntropyLoss()
print(bce_loss(outputs, labels))
# 假设模型的预测值为[[0.],[1.],[1.],[0.]],真实类别为[[1.],[1.],[0.],[0.]],计算准确率
preds = torch.tensor([[0.], [1.], [1.], [0.]])
labels = torch.tensor([[1.], [1.], [0.], [0.]])
print("accuracy is:", accuracy(preds, labels))

# 特征维度
input_dim = 2
# 学习率
lr = 0.01
# 实例化模型
model = model_LR(input_dim=input_dim)
# 指定优化器
optimizer = SimpleBatchGD(init_lr=lr, model=model)
# 指定损失函数
loss_fn = BinaryCrossEntropyLoss()
# 指定评价方式
metric = accuracy
# 实例化RunnerV2类,并传入训练配置
runner = RunnerV2(model, optimizer, metric, loss_fn)
# 训练并绘图
runner.train([X_train, y_train], [X_dev, y_dev], num_epochs=500, log_epochs=50, save_path="best_model.pdparams")
plot(runner, fig_name='linear-acc.pdf')

score, loss = runner.evaluate([X_test, y_test])
print("[Test] score/loss: {:.4f}/{:.4f}".format(score, loss))

plt.figure(figsize=(5,5))
# 绘制原始数据
plt.scatter(X[:, 0].tolist(), X[:, 1].tolist(), marker='*', c=y.tolist())
w = model.params['w']
b = model.params['b']
x1 = torch.linspace(-2, 3, 1000)
x2 = decision_boundary(w, b, x1)
# 绘制决策边界
plt.plot(x1.tolist(), x2.tolist(), color="red")
plt.show()

1.查看生成的数据集,并进行可视化

2.损失函数图像,与线性回归不同的是,Logistic回归引入了非线性函数,可以解决连续的线性函数不适合进行分类的问题。

 3.Logistic回归模型其实就是线性层与Logistic函数的组合,通常会将 Logistic回归模型中的权重和偏置初始化为0,构建Logistic回归算子并进行简单测试。

4.损失函数,用损失函数来量化预测值和真实值之间的差异,交叉熵损失函数。 在给定y的情况下,如果预测的概率分布y^​与标签真实的分布yy越接近,则交叉熵越小;如果p(x)和y越远,交叉熵就越大。 

 5.用梯度下降法进行模型优化,并进行训练(此学习率设置为0.01)

将学习率改为0.001和0.1,再次观察结果

0.001

0.1

 可以观察得出学习率为0.1较为合适。

6.模型评价,观察准确率即正确预测的数量与总的预测数量的比值

7.使用测试集对训练完成后的最终模型进行测试

二.基于Softmax回归的多分类任务,数据来自3个不同的簇,每个簇对一个类别。采集1000条样本,每个样本包含2个特征。(与二分类有许多类似之处)
from abc import abstractmethod
import torch
import matplotlib.pyplot as plt
import numpy as np
torch.seed()
def make_multiclass_classification(n_samples=100, n_features=2, n_classes=3, shuffle=True, noise=0.1):
    """
    生成带噪音的多类别数据
    输入:n_samples:数据量大小,数据类型为int
        n_features:特征数量,数据类型为int
        shuffle:是否打乱数据,数据类型为bool
        noise:以多大的程度增加噪声,数据类型为None或float,noise为None时表示不增加噪声
    输出:X:特征数据,shape=[n_samples,2]
        y:标签数据, shape=[n_samples,1]
    """
    # 计算每个类别的样本数量
    n_samples_per_class = [int(n_samples / n_classes) for k in range(n_classes)]
    for i in range(n_samples - sum(n_samples_per_class)):
        n_samples_per_class[i % n_classes] += 1
    # 将特征和标签初始化为0
    X = torch.zeros([n_samples, n_features])
    y = torch.zeros([n_samples], dtype=torch.int32)
    # 随机生成3个簇中心作为类别中心
    centroids = torch.randperm(2 ** n_features)[:n_classes]
    centroids_bin = np.unpackbits(centroids.numpy().astype('uint8')).reshape((-1, 8))[:, -n_features:]
    centroids = torch.tensor(centroids_bin, dtype=torch.float32)
    # 控制簇中心的分离程度
    centroids = 1.5 * centroids - 1
    # 随机生成特征值
    X[:, :n_features] = torch.randn([n_samples, n_features])
    stop = 0
    # 将每个类的特征值控制在簇中心附近
    for k, centroid in enumerate(centroids):
        start, stop = stop, stop + n_samples_per_class[k]
        # 指定标签值
        y[start:stop] = k % n_classes
        X_k = X[start:stop, :n_features]
        # 控制每个类别特征值的分散程度
        A = 2 * torch.rand(size=[n_features, n_features]) - 1
        X_k[...] = torch.matmul(X_k, A)
        X_k += centroid
        X[start:stop, :n_features] = X_k

    # 如果noise不为None,则给特征加入噪声
    if noise > 0.0:
        # 生成noise掩膜,用来指定给那些样本加入噪声
        noise_mask = torch.rand([n_samples]) < noise
        for i in range(len(noise_mask)):
            if noise_mask[i]:
                # 给加噪声的样本随机赋标签值
                y[i] = torch.randint(n_classes, (1,)).item()    # 如果shuffle为True,将所有数据打乱
    if shuffle:
        idx = torch.randperm(X.shape[0])
        X = X[idx]
        y = y[idx]

    return X, y
def softmax(X):
    """
    输入:X:shape=[N, C],N为向量数量,C为向量维度
    """
    x_max = torch.max(X, dim=1, keepdim=True).values  # N, 1
    x_exp = torch.exp(X - x_max)
    partition = torch.sum(x_exp, dim=1, keepdim=True)  # N, 1
    return x_exp / partition
class Op(object):
    def __init__(self):
        pass

    def __call__(self, inputs):
        return self.forward(inputs)

    def forward(self, inputs):
        raise NotImplementedError

    def backward(self, inputs):
        raise NotImplementedError
class model_SR(Op):
    def __init__(self, input_dim, output_dim):
        super(model_SR, self).__init__()
        self.params = {}
        # 将线性层的权重参数全部初始化为0
        self.params['W'] = torch.zeros([input_dim, output_dim])
        self.params['W'] = torch.normal(mean=0, std=0.01, size=[input_dim, output_dim])
        # 将线性层的偏置参数初始化为0
        self.params['b'] = torch.zeros([output_dim])
        self.outputs = None
    def __call__(self, inputs):
        return self.forward(inputs)
    def forward(self, inputs):
        """
        输入:inputs: shape=[N,D], N是样本数量,D是特征维度
        输出:outputs:预测值,shape=[N,C],C是类别数
        """
        # 线性计算
        score = torch.matmul(inputs, self.params['W']) + self.params['b']
        # Softmax 函数
        self.outputs = softmax(score)
        return self.outputs
class MultiCrossEntropyLoss(Op):
    def __init__(self):
        self.predicts = None
        self.labels = None
        self.num = None

    def __call__(self, predicts, labels):
        return self.forward(predicts, labels)

    def forward(self, predicts, labels):
        """
        输入:predicts:预测值,shape=[N, 1],N为样本数量
            labels:真实标签,shape=[N, 1]
        输出:损失值:shape=[1]
        """
        self.predicts = predicts
        self.labels = labels
        self.num = self.predicts.shape[0]
        loss = 0
        for i in range(0, self.num):
            index = self.labels[i]
            loss -= torch.log(self.predicts[i][index])
        return loss / self.num
class model_SR(Op):
    def __init__(self, input_dim, output_dim):
        super(model_SR, self).__init__()
        self.params = {}
        # 将线性层的权重参数全部初始化为0
        self.params['W'] = torch.zeros(input_dim, output_dim)
        # self.params['W'] = paddle.normal(mean=0, std=0.01, shape=[input_dim, output_dim])
        # 将线性层的偏置参数初始化为0
        self.params['b'] = torch.zeros(output_dim)
        # 存放参数的梯度
        self.grads = {}
        self.X = None
        self.outputs = None
        self.output_dim = output_dim

    def __call__(self, inputs):
        return self.forward(inputs)

    def forward(self, inputs):
        self.X = inputs
        # 线性计算
        score = torch.matmul(self.X, self.params['W']) + self.params['b']
        # Softmax 函数
        self.outputs = softmax(score)
        return self.outputs

    def backward(self, labels):
        """
        输入:labels:真实标签,shape=[N, 1],其中N为样本数量
        """
        # 计算偏导数
        N =labels.shape[0]
        labels = torch.nn.functional.one_hot(labels.to(torch.int64), self.output_dim)
        self.grads['W'] = -1 / N * torch.matmul(self.X.t(), (labels-self.outputs))
        self.grads['b'] = -1 / N * torch.matmul(torch.ones(N), (labels-self.outputs))

class Optimizer(object):
    def __init__(self, init_lr, model):
        """优化器类初始化"""
        # 初始化学习率,用于参数更新的计算
        self.init_lr = init_lr
        # 指定优化器需要优化的模型
        self.model = model

    @abstractmethod
    def step(self):
        """定义每次迭代如何更新参数"""
        pass
class SimpleBatchGD(Optimizer):
    def __init__(self, init_lr, model):
        super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)
    def step(self):
        # 参数更新
        # 遍历所有参数
        if isinstance(self.model.params, dict):
            for key in self.model.params.keys():
                self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]
def accuracy(preds, labels):
    """
    输入: preds:预测值,二分类时,shape=[N, 1],N为样本数量,多分类时,shape=[N, C],C为类别数量
        labels:真实标签,shape=[N, 1]
    输出:准确率:shape=[1]
    """
    # 判断是二分类任务还是多分类任务,preds.shape[1]=1时为二分类任务,preds.shape[1]>1时为多分类任务
    if preds.shape[1] == 1:
        # 二分类时,判断每个概率值是否大于0.5,当大于0.5时,类别为1,否则类别为0
        # 使用'torch.cast'将preds的数据类型转换为float32类型
        preds = (preds >= 0.5).float()
    else:
        # 多分类时,使用'torch.argmax'计算最大元素索引作为类别
        preds = torch.argmax(preds, 1)
    accuracy = torch.mean((preds == labels).float())
    return accuracy
class RunnerV2(object):
    def __init__(self, model, optimizer, metric, loss_fn):
        self.model = model
        self.optimizer = optimizer
        self.loss_fn = loss_fn
        self.metric = metric
        # 记录训练过程中的评价指标变化情况
        self.train_scores = []
        self.dev_scores = []
        # 记录训练过程中的损失函数变化情况
        self.train_loss = []
        self.dev_loss = []

    def train(self, train_set, dev_set, **kwargs):
        # 传入训练轮数,如果没有传入值则默认为0
        num_epochs = kwargs.get("num_epochs", 0)
        # 传入log打印频率,如果没有传入值则默认为100
        log_epochs = kwargs.get("log_epochs", 100)
        # 传入模型保存路径,如果没有传入值则默认为"best_model.pdparams"
        save_path = kwargs.get("save_path", "best_model.pdparams")
        # 梯度打印函数,如果没有传入则默认为"None"
        print_grads = kwargs.get("print_grads", None)
        # 记录全局最优指标
        best_score = 0
        # 进行num_epochs轮训练
        for epoch in range(num_epochs):
            X, y = train_set
            # 获取模型预测
            logits = self.model(X)
            # 计算交叉熵损失
            trn_loss = self.loss_fn(logits, y).item()
            self.train_loss.append(trn_loss)
            # 计算评价指标
            trn_score = self.metric(logits, y).item()
            self.train_scores.append(trn_score)
            # 计算参数梯度
            self.model.backward(y)
            if print_grads is not None:
                # 打印每一层的梯度
                print_grads(self.model)
            # 更新模型参数
            self.optimizer.step()
            dev_score, dev_loss = self.evaluate(dev_set)
            # 如果当前指标为最优指标,保存该模型
            if dev_score > best_score:
                self.save_model(save_path)
                print(f"best accuracy performence has been updated: {best_score:.5f} --> {dev_score:.5f}")
                best_score = dev_score
            if epoch % log_epochs == 0:
                print(f"[Train] epoch: {epoch}, loss: {trn_loss}, score: {trn_score}")
                print(f"[Dev] epoch: {epoch}, loss: {dev_loss}, score: {dev_score}")

    def evaluate(self, data_set):
        X, y = data_set
        # 计算模型输出
        logits = self.model(X)
        # 计算损失函数
        loss = self.loss_fn(logits, y).item()
        self.dev_loss.append(loss)
        # 计算评价指标
        score = self.metric(logits, y).item()
        self.dev_scores.append(score)
        return score, loss
    def predict(self, X):
        return self.model(X)
    def save_model(self, save_path):
        torch.save(self.model.params, save_path)
    def load_model(self, model_path):
        self.model.params = torch.load(model_path)

# 可视化观察训练集与验证集的指标变化情况
def plot(runner, fig_name):
    plt.figure(figsize=(10, 5))
    plt.subplot(1, 2, 1)
    epochs = [i for i in range(len(runner.train_scores))]
    # 绘制训练损失变化曲线
    plt.plot(epochs, runner.train_loss, color='#e4007f', label="Train loss")
    # 绘制评价损失变化曲线
    plt.plot(epochs, runner.dev_loss, color='#f19ec2', linestyle='--', label="Dev loss")
    # 绘制坐标轴和图例
    plt.ylabel("loss", fontsize='large')
    plt.xlabel("epoch", fontsize='large')
    plt.legend(loc='upper right', fontsize='x-large')
    plt.subplot(1, 2, 2)
    # 绘制训练准确率变化曲线
    plt.plot(epochs, runner.train_scores, color='#e4007f', label="Train accuracy")
    # 绘制评价准确率变化曲线
    plt.plot(epochs, runner.dev_scores, color='#f19ec2', linestyle='--', label="Dev accuracy")
    # 绘制坐标轴和图例
    plt.ylabel("score", fontsize='large')
    plt.xlabel("epoch", fontsize='large')
    plt.legend(loc='lower right', fontsize='x-large')
    plt.tight_layout()
    plt.savefig(fig_name)
    plt.show()

# 采样1000个样本
n_samples = 1000
X, y = make_multiclass_classification(n_samples=n_samples, n_features=2, n_classes=3, noise=0.2)

# 可视化生产的数据集,不同颜色代表不同类别
plt.figure(figsize=(5,5))
plt.scatter(x=X[:, 0].tolist(), y=X[:, 1].tolist(), marker='*', c=y.tolist())
plt.savefig('linear-dataset-vis2.pdf')
plt.show()

# 划分训练集测试集验证集
num_train = 640
num_dev = 160
num_test = 200
X_train, y_train = X[:num_train], y[:num_train]
X_dev, y_dev = X[num_train:num_train + num_dev], y[num_train:num_train + num_dev]
X_test, y_test = X[num_train + num_dev:], y[num_train + num_dev:]

# 打印X_train和y_train的维度
print("X_train shape: ", X_train.shape, "y_train shape: ", y_train.shape)
# 打印前5个数据的标签
print(y_train[:5])
# 观察softmax的计算方式
X = torch.tensor([[0.1, 0.2, 0.3, 0.4],[1,2,3,4]])
predict = softmax(X)
print(predict)
# 随机生成1条长度为4的数据
inputs = torch.randn(size=[1,4])
print('Input is:', inputs)
# 实例化模型,这里令输入长度为4,输出类别数为3
model = model_SR(input_dim=4, output_dim=3)
outputs = model(inputs)
print('Output is:', outputs)
# 测试
labels = torch.tensor([0])
# 计算风险函数
mce_loss = MultiCrossEntropyLoss()
print(mce_loss(outputs, labels))
# 特征维度
input_dim = 2
# 类别数
output_dim = 3
# 学习率
lr = 0.1
# 实例化模型
model = model_SR(input_dim=input_dim, output_dim=output_dim)
# 指定优化器
optimizer = SimpleBatchGD(init_lr=lr, model=model)
# 指定损失函数
loss_fn = MultiCrossEntropyLoss()
# 指定评价方式
metric = accuracy
# 实例化RunnerV2类
runner = RunnerV2(model, optimizer, metric, loss_fn)
# 模型训练
runner.train([X_train, y_train], [X_dev, y_dev], num_epochs=500, log_eopchs=50, eval_epochs=1, save_path="best_model.pdparams")
# 可视化观察训练集与验证集的准确率变化情况
plot(runner,fig_name='linear-acc2.pdf')
score, loss = runner.evaluate([X_test, y_test])
print("[Test] score/loss: {:.4f}/{:.4f}".format(score, loss))
# 均匀生成40000个数据点
x1, x2 = torch.meshgrid(torch.linspace(-3.5, 2, 200), torch.linspace(-4.5, 3.5, 200),indexing = 'ij')
x = torch.stack([torch.flatten(x1), torch.flatten(x2)], 1)
# 预测对应类别
y = runner.predict(x)
y = torch.argmax(y, 1)
# 绘制类别区域
plt.ylabel('x2')
plt.xlabel('x1')
plt.scatter(x[:,0].tolist(), x[:,1].tolist(), c=y.tolist(), cmap=plt.cm.Spectral)
n_samples = 1000
X, y = make_multiclass_classification(n_samples=n_samples, n_features=2, n_classes=3, noise=0.2)
plt.scatter(X[:, 0].tolist(), X[:, 1].tolist(), marker='*', c=y.tolist())
plt.show()

 1.查看构建的数据集

 2.划分训练集测试集并显示数据集维度

 3.观察Softmax函数计算情况,假设值为[[0.1, 0.2, 0.3, 0.4],[1,2,3,4]]

4.构建类似于二分类的算子,并进行简单测试

5.对构建好的模型进行训练(学习率0.1)

更改学习率为0.01再次观察

6.对最终模型进行评估和测试

 

 学习率改为0.01后

 

三.基于Softmax回归完成鸢尾花分类任务

数据:Iris数据集

Iris鸢尾花数据集是一个经典数据集,在机器学习领域都经常被用作示例。

数据集内包含3类共150条记录,每类各50个数据。

每条记录有4项特征:花萼长度、花萼宽度、花瓣长度、花瓣宽度。

可以通过4个特征预测鸢尾花卉属于(setosa 山鸢尾, versicolour  变色鸢尾, virginica 弗吉尼亚鸢尾)中的哪一品种。

注:此分类为多分类任务,softmax,Op,model_SR,MultiCrossEntropyLoss,Optimizer,RunnerV2,plot等类和函数

from abc import abstractmethod
import torch
from sklearn.datasets import load_iris
import pandas
import numpy as np
import matplotlib.pyplot as plt #可视化工具
# 固定随机种子
torch.seed()
# 加载数据集
def load_data(shuffle=True):
    """
    加载鸢尾花数据
    输入:shuffle:是否打乱数据,数据类型为bool
    输出:X:特征数据,shape=[150,4]
        y:标签数据, shape=[150]
    """
    # 加载原始数据
    X = np.array(load_iris().data, dtype=np.float32)
    y = np.array(load_iris().target, dtype=np.int32)
    X = torch.tensor(X)
    y = torch.tensor(y)
    # 数据归一化
    X_min = torch.min(X, dim=0).values  # 获取最小值,dim=0 表示按列
    X_max = torch.max(X, dim=0).values  # 获取最大值,dim=0 表示按列
    X = (X-X_min) / (X_max-X_min)
    # 如果shuffle为True,随机打乱数据
    if shuffle:
        idx = torch.randperm(X.shape[0])
        X = X[idx]
        y = y[idx]
    return X, y
num_train = 120
num_dev = 15
num_test = 15

X, y = load_data(shuffle=True)
X_train, y_train = X[:num_train], y[:num_train]
X_dev, y_dev = X[num_train:num_train + num_dev], y[num_train:num_train + num_dev]
X_test, y_test = X[num_train + num_dev:], y[num_train + num_dev:]
def softmax(X):
    """
    输入:X:shape=[N, C],N为向量数量,C为向量维度
    """
    x_max = torch.max(X, dim=1, keepdim=True).values  # N, 1
    x_exp = torch.exp(X - x_max)
    partition = torch.sum(x_exp, dim=1, keepdim=True)  # N, 1
    return x_exp / partition
class Op(object):
    def __init__(self):
        pass

    def __call__(self, inputs):
        return self.forward(inputs)

    def forward(self, inputs):
        raise NotImplementedError

    def backward(self, inputs):
        raise NotImplementedError
class model_SR(Op):
    def __init__(self, input_dim, output_dim):
        super(model_SR, self).__init__()
        self.params = {}
        # 将线性层的权重参数全部初始化为0
        self.params['W'] = torch.zeros([input_dim, output_dim])
        self.params['W'] = torch.normal(mean=0, std=0.01, size=[input_dim, output_dim])
        # 将线性层的偏置参数初始化为0
        self.params['b'] = torch.zeros([output_dim])
        self.outputs = None
    def __call__(self, inputs):
        return self.forward(inputs)
    def forward(self, inputs):
        """
        输入:inputs: shape=[N,D], N是样本数量,D是特征维度
        输出:outputs:预测值,shape=[N,C],C是类别数
        """
        # 线性计算
        score = torch.matmul(inputs, self.params['W']) + self.params['b']
        # Softmax 函数
        self.outputs = softmax(score)
        return self.outputs
class MultiCrossEntropyLoss(Op):
    def __init__(self):
        self.predicts = None
        self.labels = None
        self.num = None

    def __call__(self, predicts, labels):
        return self.forward(predicts, labels)

    def forward(self, predicts, labels):
        """
        输入:predicts:预测值,shape=[N, 1],N为样本数量
            labels:真实标签,shape=[N, 1]
        输出:损失值:shape=[1]
        """
        self.predicts = predicts
        self.labels = labels
        self.num = self.predicts.shape[0]
        loss = 0
        for i in range(0, self.num):
            index = self.labels[i]
            loss -= torch.log(self.predicts[i][index])
        return loss / self.num
class model_SR(Op):
    def __init__(self, input_dim, output_dim):
        super(model_SR, self).__init__()
        self.params = {}
        # 将线性层的权重参数全部初始化为0
        self.params['W'] = torch.zeros(input_dim, output_dim)
        # self.params['W'] = paddle.normal(mean=0, std=0.01, shape=[input_dim, output_dim])
        # 将线性层的偏置参数初始化为0
        self.params['b'] = torch.zeros(output_dim)
        # 存放参数的梯度
        self.grads = {}
        self.X = None
        self.outputs = None
        self.output_dim = output_dim

    def __call__(self, inputs):
        return self.forward(inputs)

    def forward(self, inputs):
        self.X = inputs
        # 线性计算
        score = torch.matmul(self.X, self.params['W']) + self.params['b']
        # Softmax 函数
        self.outputs = softmax(score)
        return self.outputs

    def backward(self, labels):
        """
        输入:labels:真实标签,shape=[N, 1],其中N为样本数量
        """
        # 计算偏导数
        N =labels.shape[0]
        labels = torch.nn.functional.one_hot(labels.to(torch.int64), self.output_dim)
        self.grads['W'] = -1 / N * torch.matmul(self.X.t(), (labels-self.outputs))
        self.grads['b'] = -1 / N * torch.matmul(torch.ones(N), (labels-self.outputs))

class Optimizer(object):
    def __init__(self, init_lr, model):
        """优化器类初始化"""
        # 初始化学习率,用于参数更新的计算
        self.init_lr = init_lr
        # 指定优化器需要优化的模型
        self.model = model

    @abstractmethod
    def step(self):
        """定义每次迭代如何更新参数"""
        pass
class RunnerV2(object):
    def __init__(self, model, optimizer, metric, loss_fn):
        self.model = model
        self.optimizer = optimizer
        self.loss_fn = loss_fn
        self.metric = metric
        # 记录训练过程中的评价指标变化情况
        self.train_scores = []
        self.dev_scores = []
        # 记录训练过程中的损失函数变化情况
        self.train_loss = []
        self.dev_loss = []

    def train(self, train_set, dev_set, **kwargs):
        # 传入训练轮数,如果没有传入值则默认为0
        num_epochs = kwargs.get("num_epochs", 0)
        # 传入log打印频率,如果没有传入值则默认为100
        log_epochs = kwargs.get("log_epochs", 100)
        # 传入模型保存路径,如果没有传入值则默认为"best_model.pdparams"
        save_path = kwargs.get("save_path", "best_model.pdparams")
        # 梯度打印函数,如果没有传入则默认为"None"
        print_grads = kwargs.get("print_grads", None)
        # 记录全局最优指标
        best_score = 0
        # 进行num_epochs轮训练
        for epoch in range(num_epochs):
            X, y = train_set
            # 获取模型预测
            logits = self.model(X)
            # 计算交叉熵损失
            trn_loss = self.loss_fn(logits, y).item()
            self.train_loss.append(trn_loss)
            # 计算评价指标
            trn_score = self.metric(logits, y).item()
            self.train_scores.append(trn_score)
            # 计算参数梯度
            self.model.backward(y)
            if print_grads is not None:
                # 打印每一层的梯度
                print_grads(self.model)
            # 更新模型参数
            self.optimizer.step()
            dev_score, dev_loss = self.evaluate(dev_set)
            # 如果当前指标为最优指标,保存该模型
            if dev_score > best_score:
                self.save_model(save_path)
                print(f"best accuracy performence has been updated: {best_score:.5f} --> {dev_score:.5f}")
                best_score = dev_score
            if epoch % log_epochs == 0:
                print(f"[Train] epoch: {epoch}, loss: {trn_loss}, score: {trn_score}")
                print(f"[Dev] epoch: {epoch}, loss: {dev_loss}, score: {dev_score}")

    def evaluate(self, data_set):
        X, y = data_set
        # 计算模型输出
        logits = self.model(X)
        # 计算损失函数
        loss = self.loss_fn(logits, y).item()
        self.dev_loss.append(loss)
        # 计算评价指标
        score = self.metric(logits, y).item()
        self.dev_scores.append(score)
        return score, loss
    def predict(self, X):
        return self.model(X)
    def save_model(self, save_path):
        torch.save(self.model.params, save_path)
    def load_model(self, model_path):
        self.model.params = torch.load(model_path)
class SimpleBatchGD(Optimizer):
    def __init__(self, init_lr, model):
        super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)
    def step(self):
        # 参数更新
        # 遍历所有参数
        if isinstance(self.model.params, dict):
            for key in self.model.params.keys():
                self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]
def accuracy(preds, labels):
    """
    输入: preds:预测值,二分类时,shape=[N, 1],N为样本数量,多分类时,shape=[N, C],C为类别数量
        labels:真实标签,shape=[N, 1]
    输出:准确率:shape=[1]
    """
    # 判断是二分类任务还是多分类任务,preds.shape[1]=1时为二分类任务,preds.shape[1]>1时为多分类任务
    if preds.shape[1] == 1:
        # 二分类时,判断每个概率值是否大于0.5,当大于0.5时,类别为1,否则类别为0
        # 使用'torch.cast'将preds的数据类型转换为float32类型
        preds = (preds >= 0.5).float()
    else:
        # 多分类时,使用'torch.argmax'计算最大元素索引作为类别
        preds = torch.argmax(preds, 1)
    accuracy = torch.mean((preds == labels).float())
    return accuracy
def plot(runner, fig_name):
    plt.figure(figsize=(10, 5))
    plt.subplot(1, 2, 1)
    epochs = [i for i in range(len(runner.train_scores))]
    # 绘制训练损失变化曲线
    plt.plot(epochs, runner.train_loss, color='#e4007f', label="Train loss")
    # 绘制评价损失变化曲线
    plt.plot(epochs, runner.dev_loss, color='#f19ec2', linestyle='--', label="Dev loss")
    # 绘制坐标轴和图例
    plt.ylabel("loss", fontsize='large')
    plt.xlabel("epoch", fontsize='large')
    plt.legend(loc='upper right', fontsize='x-large')
    plt.subplot(1, 2, 2)
    # 绘制训练准确率变化曲线
    plt.plot(epochs, runner.train_scores, color='#e4007f', label="Train accuracy")
    # 绘制评价准确率变化曲线
    plt.plot(epochs, runner.dev_scores, color='#f19ec2', linestyle='--', label="Dev accuracy")
    # 绘制坐标轴和图例
    plt.ylabel("score", fontsize='large')
    plt.xlabel("epoch", fontsize='large')
    plt.legend(loc='lower right', fontsize='x-large')
    plt.tight_layout()
    plt.savefig(fig_name)
    plt.show()
# 箱线图查看异常值分布
def boxplot(features):
    feature_names = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width']

    # 连续画几个图片
    plt.figure(figsize=(5, 5), dpi=200)
    # 子图调整
    plt.subplots_adjust(wspace=0.6)
    # 每个特征画一个箱线图
    for i in range(4):
        plt.subplot(2, 2, i+1)
        # 画箱线图
        plt.boxplot(features[:, i],
                    showmeans=True,
                    whiskerprops={"color":"#E20079", "linewidth":0.4, 'linestyle':"--"},
                    flierprops={"markersize":0.4},
                    meanprops={"markersize":1})
        # 图名
        plt.title(feature_names[i], fontdict={"size":5}, pad=2)
        # y方向刻度
        plt.yticks(fontsize=4, rotation=90)
        plt.tick_params(pad=0.5)
        # x方向刻度
        plt.xticks([])
    plt.savefig('ml-vis.pdf')
    plt.show()

iris_features = np.array(load_iris().data, dtype=np.float32)
iris_labels = np.array(load_iris().target, dtype=np.int32)
print(pandas.isna(iris_features).sum())
print(pandas.isna(iris_labels).sum())
boxplot(iris_features)

# 输入维度
input_dim = 4
# 类别数
output_dim = 3
# 实例化模型
model = model_SR(input_dim=input_dim, output_dim=output_dim)
# 学习率
lr = 0.2
# 梯度下降法
optimizer = SimpleBatchGD(init_lr=lr, model=model)
# 交叉熵损失
loss_fn = MultiCrossEntropyLoss()
# 准确率
metric = accuracy
# 实例化RunnerV2
runner = RunnerV2(model, optimizer, metric, loss_fn)
# 启动训练
runner.train([X_train, y_train], [X_dev, y_dev], num_epochs=200, log_epochs=10, save_path="best_model.pdparams")
plot(runner, fig_name='linear-acc2.pdf')
# 加载最优模型
runner.load_model('best_model.pdparams')
# 模型评价
score, loss = runner.evaluate([X_test, y_test])
print("[测试] 分数/损失: {:.4f}/{:.4f}".format(score, loss))
# 预测测试集数据
logits = runner.predict(X_test)
# 观察其中一条样本的预测结果
pred = torch.argmax(logits[0]).numpy()
# 获取该样本概率最大的类别
label = y_test[0].numpy()
# 输出类别
print("真实类别为 {},预测类别为 {}".format(label.item(), pred.item()))

1.查看鸢尾花中的缺失值,并划分训练集,用箱线图观察数据集

表示无缺失值

2.调用相关类和函数对模型进行训练(学习率0.2)

更改学习率为0.3

更改学习率为0.1

更改学习率为0.01

观察可知学习率0.2时最优

3.对模型进行测试

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值