线性回归(使用pytorch实现)

目录

2.2 线性回归

2.2.1 数据集构建

2.2.2 模型构建

2.2.3 损失函数

2.2.4 模型优化

2.2.5 模型训练

2.2.6 模型评估

2.2.7 样本数量 & 正则化系数

2.3 多项式回归

2.3.1 数据集构建

2.3.2 模型构建

2.3.3 模型训练

2.3.4 模型评估

2.4 Runner类介绍

2.5 基于线性回归的波士顿房价预测

2.5.1.2 数据清洗

2.5.1.3 数据集划分

2.5.1.4 特征工程

2.5.2 模型构建

2.5.3 完善Runner类

2.5.4 模型训练

2.5.5 模型测试

2.5.6 模型预测

总结

2.2 线性回归

2.2.1 数据集构建

构造一个小的回归数据集:

生成 150 个带噪音的样本,其中 100 个训练样本,50 个测试样本,并打印出训练数据的可视化分布。

import torch
import matplotlib.pyplot as plt

# 真实函数的参数缺省值为 w=1.2,b=0.5
def linear_func(x,w=1.2,b=0.5):
    y=w*x + b
    return y
def create_toy_data(func, interval, sample_num, noise = 0.0, add_outlier = False, outlier_ratio = 0.001):
    """
    根据给定的函数,生成样本
    输入:
       - func:函数
       - interval: x的取值范围
       - sample_num: 样本数目
       - noise: 噪声均方差
       - add_outlier:是否生成异常值
       - outlier_ratio:异常值占比
    输出:
       - X: 特征数据,shape=[n_samples,1]
       - y: 标签数据,shape=[n_samples,1]
    """
    # 均匀采样
    # 使用torch.rand在生成sample_num个随机数
    X = torch.rand(size = [sample_num]) * (interval[1]-interval[0]) + interval[0]
    y = func(X)

    # 生成高斯分布的标签噪声
    # 使用torch.normal生成0均值,noise标准差的数据
    epsilon = torch.normal(0,noise,y.shape)
    y = y + epsilon
    if add_outlier:     # 生成额外的异常点
        outlier_num = int(len(y)*outlier_ratio)
        if outlier_num != 0:
            # 使用torch.randint生成服从均匀分布的、范围在[0, len(y))的随机Tensor
            outlier_idx = torch.randint(len(y),size = [outlier_num])
            y[outlier_idx] = y[outlier_idx] * 5
    return X, y

func = linear_func
interval = (-10,10)
train_num = 100 # 训练样本数目
test_num = 50 # 测试样本数目
noise = 2
X_train, y_train = create_toy_data(func=func, interval=interval, sample_num=train_num, noise = noise, add_outlier = False)
X_test, y_test = create_toy_data(func=func, interval=interval, sample_num=test_num, noise = noise, add_outlier = False)

X_train_large, y_train_large = create_toy_data(func=func, interval=interval, sample_num=5000, noise = noise, add_outlier = False)

# torch.linspace返回一个Tensor,Tensor的值为在区间start和stop上均匀间隔的num个值,输出Tensor的长度为num
X_underlying = torch.linspace(interval[0],interval[1],train_num)
y_underlying = linear_func(X_underlying)

# 绘制数据
plt.scatter(X_train, y_train, marker='*', facecolor="none", edgecolor='#e4007f', s=50, label="train data")
plt.scatter(X_test, y_test, facecolor="none", edgecolor='#f19ec2', s=50, label="test data")
plt.plot(X_underlying, y_underlying, c='#000000', label=r"underlying distribution")
plt.legend(fontsize='x-large') # 给图像加图例
plt.savefig('ml-vis.pdf') # 保存图像到PDF文件中
plt.show()


2.2.2 模型构建

y=wX+b

import torch
torch.seed()  # 设置随机种子
class Op(object):
    def __init__(self):
        pass

    def __call__(self, inputs):
        return self.forward(inputs)

    def forward(self, inputs):
        raise NotImplementedError

    def backward(self, inputs):
        raise NotImplementedError

# 线性算子
class Linear(Op):
    def __init__(self, input_size):
        """
        输入:
           - input_size:模型要处理的数据特征向量长度
        """

        self.input_size = input_size

        # 模型参数
        self.params = {}
        self.params['w'] = torch.randn(self.input_size, 1)
        self.params['b'] = torch.zeros([1])

    def __call__(self, X):
        return self.forward(X)

    # 前向函数
    def forward(self, X):
        """
        输入:
           - X: tensor, shape=[N,D]
           注意这里的X矩阵是由N个x向量的转置拼接成的,与原教材行向量表示方式不一致
        输出:
           - y_pred: tensor, shape=[N]
        """

        N, D = X.shape

        if self.input_size == 0:
            return torch.full(shape=[N, 1], fill_value=self.params['b'])

        assert D == self.input_size  # 输入数据维度合法性验证

        # 使用paddle.matmul计算两个tensor的乘积
        y_pred = torch.matmul(X, self.params['w']) + self.params['b']

        return y_pred

# 注意这里我们为了和后面章节统一,这里的X矩阵是由N个x向量的转置拼接成的,与原教材行向量表示方式不一致
input_size = 3
N = 2
X = torch.randn(N, input_size)  # 生成2个维度为3的数据
model = Linear(input_size)
y_pred = model(X)
print("y_pred:", y_pred)  # 输出结果的个数也是2个

2.2.3 损失函数

回归任务中常用的评估指标是均方误差

均方误差是反映估计量与被估计量之间差异程度的一种度量。

令y∈RNy∈RN,y^∈RNy^∈RN分别为NN个样本的真实标签和预测标签,均方误差的定义为:

 其中bb为NN维向量,所有元素取值都为bb。

【注意:代码实现中没有除2】

import torch

def mean_squared_error(y_true, y_pred):
    """
    输入:
       - y_true: tensor,样本真实标签
       - y_pred: tensor, 样本预测标签
    输出:
       - error: float,误差值
    """
    assert y_true.shape[0] == y_pred.shape[0]

    # torch.square计算输入的平方值
    # torch.mean沿 axis 计算 x 的平均值,默认axis是None,则对输入的全部元素计算平均值。
    error = torch.mean(torch.square(y_true - y_pred))
    return error

# 构造一个简单的样例进行测试:[N,1], N=2
y_true = torch.tensor([[-0.2], [4.9]],dtype=torch.float32)
y_pred = torch.tensor([[1.3], [2.5]],dtype=torch.float32)

error = mean_squared_error(y_true=y_true, y_pred=y_pred).item()
print("error:", error)

 思考:没有除2合理么?谈谈自己的看法

合理,除2不影响均方误差,后续对有平方的损失函数求导,含1/2更加方便计算。

2.2.4 模型优化

经验风险 ( Empirical Risk ),即在训练集上的平均损失。

import torch

def optimizer_lsm(model, X, y, reg_lambda=0):
    """
      输入:
         - model: 模型
         - X: tensor, 特征数据,shape=[N,D]
         - y: tensor,标签数据,shape=[N]
         - reg_lambda: float, 正则化系数,默认为0
      输出:
         - model: 优化好的模型
      """

    N, D = X.shape

    # 对输入特征数据所有特征向量求平均
    x_bar_tran = torch.mean(X, axis=0).T

    # 求标签的均值,shape=[1]
    y_bar = torch.mean(y)

    # torch.subtract通过广播的方式实现矩阵减向量
    x_sub = torch.subtract(X, x_bar_tran)

    # 使用torch.all判断输入tensor是否全0
    if torch.all(x_sub == 0):
        model.params['b'] = y_bar
        model.params['w'] = torch.zeros(shape=[D])
        return model

    # torch.inverse求方阵的逆
    tmp = torch.inverse(torch.matmul(x_sub.T, x_sub) +
                         reg_lambda * paddle.eye(num_rows=(D)))

    w = torch.matmul(torch.matmul(tmp, x_sub.T), (y - y_bar))

    b = y_bar - torch.matmul(x_bar_tran, w)

    model.params['b'] = b
    model.params['w'] = torch.squeeze(w, axis=-1)

    return model

思考1. 为什么省略了\frac{1}{N}不影响效果?

1/N是一个常数,不影响效果

思考 2.  什么是最小二乘法 

最小二乘法是一种优化方法,求得目标函数的最优值。并且也可以用于曲线拟合,来解决回归问题

2.2.5 模型训练

在准备了数据、模型、损失函数和参数学习的实现之后,开始模型的训练。

在回归任务中,模型的评价指标和损失函数一致,都为均方误差。

通过上文实现的线性回归类来拟合训练数据,并输出模型在训练集上的损失。

input_size = 1
model = Linear(input_size)
model = optimizer_lsm(model,X_train.reshape([-1,1]),y_train.reshape([-1,1]))
print("w_pred:",model.params['w'].item(), "b_pred: ", model.params['b'].item())

y_train_pred = model(X_train.reshape([-1,1])).squeeze()
train_error = mean_squared_error(y_true=y_train, y_pred=y_train_pred).item()
print(
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值