目录
- 题前注
- 1. 计算下列行列式:
(1) ∣ 2 3 − 5 0 2 − 1 0 0 − 2 ∣ \left| \begin{matrix} 2 & 3 & -5 \\ 0 & 2 & -1 \\ 0 & 0 & -2 \\\end{matrix} \right| ∣∣∣∣∣∣200320−5−1−2∣∣∣∣∣∣;(2) ∣ 0 1 2 2 1 1 − 1 3 1 ∣ \left| \begin{matrix} 0 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & 3 & 1 \\\end{matrix} \right| ∣∣∣∣∣∣02−1113211∣∣∣∣∣∣. - 2. 计算下列行列式:
(1) ∣ 1 2 3 2 4 6 − 3 7 − 2 ∣ \left| \begin{matrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ -3 & 7 & -2 \\\end{matrix} \right| ∣∣∣∣∣∣12−324736−2∣∣∣∣∣∣;(2) ∣ 0 2 4 2 1 1 − 1 3 1 ∣ \left| \begin{matrix} 0 & 2 & 4 \\ 2 & 1 & 1 \\ -1 & 3 & 1 \\\end{matrix} \right| ∣∣∣∣∣∣02−1213411∣∣∣∣∣∣. - 3. 计算下列行列式:
(1) ∣ x y z x + 1 y + 1 z + 1 x + 2 y + 2 z + 2 ∣ \left| \begin{matrix} x & y & z \\ x+1 & y+1 & z+1 \\ x+2 & y+2 & z+2 \\\end{matrix} \right| ∣∣∣∣∣∣xx+1x+2yy+1y+2zz+1z+2∣∣∣∣∣∣;(2) ∣ x x 2 + 1 − 1 0 − x e x 1 0 0 ∣ \left| \begin{matrix} x & { {x}^{2}}+1 & -1 \\ 0 & -x & { {e}^{x}} \\ 1 & 0 & 0 \\\end{matrix} \right| ∣∣∣∣∣∣x01x2+1−x0−1ex0∣∣∣∣∣∣. - 4. 解下列方程:
(1) ∣ 1 2 3 1 x 3 1 5 − 2 ∣ = 0 \left| \begin{matrix} 1 & 2 & 3 \\ 1 & x & 3 \\ 1 & 5 & -2 \\\end{matrix} \right|=0 ∣∣∣∣∣∣1112x533−2∣∣∣∣∣∣=0;(2) ∣ x − 2 1 − 2 2 2 1 − 1 1 1 ∣ = 0 \left| \begin{matrix} x-2 & 1 & -2 \\ 2 & 2 & 1 \\ -1 & 1 & 1 \\\end{matrix} \right|=0 ∣∣∣∣∣∣x−22−1121−211∣∣∣∣∣∣=0. - 5. 用行列式解下列三元一次方程组:
(1) { x 1 − x 2 + x 3 = 2 , x 1 + 2 x 2 = 1 , x 1 − x 3 = 4. \left\{ \begin{aligned} & { {x}_{1}}-{ {x}_{2}}+{ {x}_{3}}=2, \\ & { {x}_{1}}+2{ {x}_{2}}=1, \\ & { {x}_{1}}-{ {x}_{3}}=4. \\ \end{aligned} \right. ⎩⎪⎨⎪⎧x1−x2+x3=2,x1+2x2=1,x1−x3=4. (2) { x + y + z = 0 , 2 x − 5 y − 3 z = 10 , 4 x + 8 y + 2 z = 4. \left\{ \begin{aligned} & x+y+z=0, \\ & 2x-5y-3z=10, \\ & 4x+8y+2z=4. \\ \end{aligned} \right. ⎩⎪⎨⎪⎧x+y+z=0,2x−5y−3z=10,4x+8y+2z=4.
题前注
以下凡涉及三阶行列式的展开皆沿用P9的定义式(即按第一列展开):
∣ A ∣ = a 11 M 11 − a 21 M 21 + a 31 M 31 , \left| A \right|={
{a}_{11}}{
{M}_{11}}-{
{a}_{21}}{
{M}_{21}}+{
{a}_{31}}{
{M}_{31}}, ∣A∣=a11M11−a21M21+a31M31,
其中
∣ A ∣ = ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ . \left| A \right|=\left| \begin{matrix} {
{a}_{11}} & {
{a}_{12}} & {
{a}_{13}} \\ {
{a}_{21}} & {
{a}_{22}} & {
{a}_{23}} \\ {
{a}_{31}} & {
{a}_{32}} & {
{a}_{33}} \\ \end{matrix} \right|. ∣A∣=∣∣∣∣∣∣a11a21a31a12a22a32a13a23a33∣∣∣∣∣∣.
1. 计算下列行列式:
(1) ∣ 2 3 − 5 0 2 − 1 0 0 − 2 ∣ \left| \begin{matrix} 2 & 3 & -5 \\ 0 & 2 & -1 \\ 0 & 0 & -2 \\\end{matrix} \right| ∣∣∣∣∣∣200320−5−1−2∣∣∣∣∣∣;(2) ∣ 0 1 2 2 1 1 − 1 3 1 ∣ \left| \begin{matrix} 0 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & 3 & 1 \\\end{matrix} \right| ∣∣∣∣∣∣02−1113211∣∣∣∣∣∣.
解
- 该行列式是上三角行列式,因此直接有
∣ 2 3 − 5 0 2 − 1 0 0 − 2 ∣ = 2 × 2 × ( − 2 ) = − 8. \left| \begin{matrix} 2 & 3 & -5 \\ 0 & 2 & -1 \\ 0 & 0 & -2 \\ \end{matrix} \right|=2\times 2\times \left( -2 \right)=-8. ∣∣∣∣∣∣200320−5−1−2∣∣∣∣∣∣=2×2×(−2)=−8.
∣ 0 1 2 2 1 1 − 1 3 1 ∣ → = 2 r 3 → r 2 ∣ 0 1 2 0 7 3 − 1 3 1 ∣ = ( − 1 ) × ∣ 1 2 7 3 ∣ = 11. \left| \begin{matrix} 0 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & 3 & 1 \\ \end{matrix} \right|\xrightarrow[=]{2r_3 \to r_2} \left| \begin{matrix} 0 & 1 & 2 \\ 0 & 7 & 3 \\ -1 & 3 & 1 \\ \end{matrix} \right|=\left( -1 \right)\times \left| \begin{matrix} 1 & 2 \\ 7 & 3 \\ \end{matrix} \right|=11. ∣∣∣∣∣∣02−1113211∣∣∣∣∣∣2r3→r2=∣∣∣∣∣∣00−1173231∣∣∣∣∣∣=(−1)×∣∣∣∣1723∣∣∣∣=11.
2. 计算下列行列式:
(1) ∣ 1 2 3 2 4 6 − 3 7 − 2 ∣ \left| \begin{matrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ -3 & 7 & -2 \\\end{matrix} \right| ∣∣∣∣∣∣12−324736−2∣∣∣∣∣∣;(2) ∣ 0 2 4 2 1 1 − 1 3 1 ∣ \left| \begin{matrix} 0 & 2 & 4 \\ 2 & 1 & 1 \\ -1 & 3 & 1 \\\end{matrix} \right| ∣∣∣∣∣∣02−1213411∣∣∣∣∣∣.
解
- 观察到第二行恰好是第一行的 2 2 2倍,于是直接有
∣ 1 2 3 2 4 6 − 3 7 − 2 ∣ = 0. \left| \begin{matrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ -3 & 7 & -2 \\ \end{matrix} \right|=0. ∣∣∣∣∣∣12−324736−2∣∣∣∣∣∣=0. - 借助第1题的第(2)问,直接有
∣ 0 2 4 2 1 1 − 1 3 1 ∣ = 2 × ∣ 0 1 2 2 1 1 − 1 3 1 ∣ = 22. \left| \begin{matrix} 0 & 2 & 4 \\ 2 & 1 & 1 \\ -1 & 3 & 1 \\ \end{matrix} \right|=2\times \left| \begin{matrix} 0 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & 3 & 1 \\ \end{matrix} \right|=22. ∣∣∣∣∣∣02−1213411∣∣∣∣∣∣=2×∣∣∣∣∣∣02−1113211∣∣∣∣∣∣=22.
3. 计算下列行列式:
(1) ∣ x y z x + 1 y + 1 z + 1 x + 2 y + 2 z + 2 ∣ \left| \begin{matrix} x & y & z \\ x+1 & y+1 & z+1 \\ x+2 & y+2 & z+2 \\\end{matrix} \right| ∣∣∣∣∣∣xx+1x+2yy+1y+2zz+1z+2∣∣∣∣∣∣;(2) ∣ x x 2 + 1 − 1 0 − x e x 1 0 0 ∣ \left| \begin{matrix} x & {
{x}^{2}}+1 & -1 \\ 0 & -x & {
{e}^{x}} \\ 1 & 0 & 0 \\\end{matrix} \right| ∣∣∣∣∣∣x01x2+1−x0−1ex0∣∣∣∣∣∣.
解
- 观察到第二、三行恰好同第一行各相差常数 1 1 1, 2 2 2,于是有
∣ x y z x + 1 y + 1 z + 1 x + 2 y + 2 z + 2 ∣ → ∣ x y z 1 1 1 2 2 2 ∣ = r 3 = 2 r 2 0. \left| \begin{matrix} x & y & z \\ x+1 & y+1 & z+1 \\ x+2 & y+2 & z+2 \\ \end{matrix} \right|\to \left| \begin{matrix} x & y & z \\ 1 & 1 & 1 \\ 2 & 2 & 2 \\ \end{matrix} \right|\xlongequal{r_3 = 2r_2}0. ∣∣∣∣∣∣xx+1x+2yy+1y+2zz+1z+2∣∣∣∣∣∣→∣∣∣∣∣∣x12y12z12∣∣∣∣∣∣r3=2r20.
∣ x x 2 + 1 − 1 0 − x e x 1 0 0 ∣ → × ( − 1 ) r 1 ↔ r 3 , 然 后 转 置 − ∣ 1 0 x 0 − x x 2 + 1 0 e x − 1 ∣ = − 1 ⋅ ∣ − x x 2 + 1 e x − 1 ∣ = e x ( x 2 + 1 ) − x . \left| \begin{matrix} x & { {x}^{2}}+1 & -1 \\ 0 & -x & { {e}^{x}} \\ 1 & 0 & 0 \\ \end{matrix} \right|\xrightarrow[\times(-1)]{r_1 \leftrightarrow r_3,然后转置} -\left| \begin{matrix} 1 & 0 & x \\ 0 & -x & { {x}^{2}}+1 \\ 0 & { {e}^{x}} & -1 \\ \end{matrix} \right| =-1\centerdot \left| \begin{matrix} -x & { {x}^{2}}+1 \\ { {e}^{x}} & -1 \\ \end{matrix} \right|={ {e}^{x}}\left( { {x}^{2}}+1 \right)-x. ∣∣∣∣∣∣x01x2+1−x0−1ex0∣∣∣∣∣∣r1↔r3,然后转置×(−1)−∣∣∣∣∣∣