目录
- 1. 通过计算证明下列行列式按第一行展开的值等于按第一列展开的值:
∣ 1 0 0 2 7 3 5 2 2 ∣ , ∣ 1 0 − 5 6 2 − 1 5 − 11 6 ∣ \left| \begin{matrix} 1 & 0 & 0 \\ 2 & 7 & 3 \\ 5 & 2 & 2 \\\end{matrix} \right|,\left| \begin{matrix} 1 & 0 & -5 \\ 6 & 2 & -1 \\ 5 & -11 & 6 \\\end{matrix} \right| ∣∣∣∣∣∣125072032∣∣∣∣∣∣,∣∣∣∣∣∣16502−11−5−16∣∣∣∣∣∣ - 2. 将下列行列式分别按第二行及第三列展开求值并比较其结果:
∣ 2 3 5 1 2 0 0 3 8 ∣ , ∣ 3 2 − 2 2 − 1 3 9 6 − 7 ∣ \left| \begin{matrix} 2 & 3 & 5 \\ 1 & 2 & 0 \\ 0 & 3 & 8 \\\end{matrix} \right|,\left| \begin{matrix} 3 & 2 & -2 \\ 2 & -1 & 3 \\ 9 & 6 & -7 \\\end{matrix} \right| ∣∣∣∣∣∣210323508∣∣∣∣∣∣,∣∣∣∣∣∣3292−16−23−7∣∣∣∣∣∣ - 3. 设 ∣ A ∣ \left| A \right| ∣A∣是 n n n阶行列式,若 ∣ A ∣ \left| A \right| ∣A∣的第 ( i , j ) \left( i,j \right) (i,j)元素 a i j { {a}_{ij}} aij与第 ( j , i ) \left( j,i \right) (j,i)元素 a j i { {a}_{ji}} aji适合关系式 a i j = − a j i , { {a}_{ij}}=-{ {a}_{ji}}, aij=−aji,则称 ∣ A ∣ \left| A \right| ∣A∣是一个反对称行列式。求证:当 n n n是奇数时, n n n阶反对称行列式的值等于零。
- 4. 求证: n n n阶行列式 ∣ 0 0 ⋯ 0 b 1 0 0 ⋯ b 2 0 ⋮ ⋮ ⋮ ⋮ 0 b n − 1 ⋯ 0 0 b n 0 ⋯ 0 0 ∣ = ( − 1 ) 1 2 n ( n − 1 ) b 1 b 2 ⋯ b n . \left| \begin{matrix} 0 & 0 & \cdots & 0 & { {b}_{1}} \\ 0 & 0 & \cdots & { {b}_{2}} & 0 \\ \vdots & \vdots & {} & \vdots & \vdots \\ 0 & { {b}_{n-1}} & \cdots & 0 & 0 \\ { {b}_{n}} & 0 & \cdots & 0 & 0 \\\end{matrix} \right|={ {\left( -1 \right)}^{\frac{1}{2}n\left( n-1 \right)}}{ {b}_{1}}{ {b}_{2}}\cdots { {b}_{n}}. ∣∣∣∣∣∣∣∣∣∣∣00⋮0bn00⋮bn−10⋯⋯⋯⋯0b2⋮00b10⋮00∣∣∣∣∣∣∣∣∣∣∣=(−1)21n(n−1)b1b2⋯bn.
- 5. 求下列关于 x x x的多项式中一次项的系数:
f ( x ) = ∣ 2 x − 5 3 1 2 3 4 − 1 0 − 2 − 3 − 1 7 − 2 − 2 ∣ . f\left( x \right)=\left| \begin{matrix} 2 & x & -5 & 3 \\ 1 & 2 & 3 & 4 \\ -1 & 0 & -2 & -3 \\ -1 & 7 & -2 & -2 \\\end{matrix} \right|. f(x)=∣∣∣∣∣∣∣∣21−1−1x207−53−2−234−3−2∣∣∣∣∣∣∣∣. - 6. 用Cramer法则求下列线性方程组的解: { x 1 + 2 x 2 + 3 x 4 = 1 , 2 x 1 + 5 x 2 − x 3 + 4 x 4 = 2 , 3 x 1 + 6 x 2 + x 3 + 10 x 4 = 3 , − x 1 − 2 x 2 − 2 x 4 = 4. \left\{ \begin{aligned} & { {x}_{1}}+2{ {x}_{2}}+3{ {x}_{4}}=1, \\ & 2{ {x}_{1}}+5{ {x}_{2}}-{ {x}_{3}}+4{ {x}_{4}}=2, \\ & 3{ {x}_{1}}+6{ {x}_{2}}+{ {x}_{3}}+10{ {x}_{4}}=3, \\ & -{ {x}_{1}}-2{ {x}_{2}}-2{ {x}_{4}}=4. \\ \end{aligned} \right. ⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧x1+2x2+3x4=1,2x1+5x2−x3+4x4=2,3x1+6x2+x3+10x4=3,−x1−2x2−2x4=4.
1. 通过计算证明下列行列式按第一行展开的值等于按第一列展开的值:
∣ 1 0 0 2 7 3 5 2 2 ∣ , ∣ 1 0 − 5 6 2 − 1 5 − 11 6 ∣ \left| \begin{matrix} 1 & 0 & 0 \\ 2 & 7 & 3 \\ 5 & 2 & 2 \\\end{matrix} \right|,\left| \begin{matrix} 1 & 0 & -5 \\ 6 & 2 & -1 \\ 5 & -11 & 6 \\\end{matrix} \right| ∣∣∣∣∣∣125072032∣∣∣∣∣∣,∣∣∣∣∣∣16502−11−5−16∣∣∣∣∣∣
解
{ ∣ 1 0 0 2 7 3 5 2 2 ∣ → = 按 第 1 行 展 开 1 × ∣ 7 3 2 2 ∣ − 0 × ∣ 2 3 5 2 ∣ + 0 × ∣ 2 7 5 2 ∣ = 8. ∣ 1 0 0 2 7 3 5 2 2 ∣ → = 按 第 1 列 展 开 1 × ∣ 7 3 2 2 ∣ − 2 × ∣ 0 0 2 2 ∣ + 5 × ∣ 0 0 7 3 ∣ = 8. \left\{ \begin{aligned} & \left| \begin{matrix} 1 & 0 & 0 \\ 2 & 7 & 3 \\ 5 & 2 & 2 \\ \end{matrix} \right|\xrightarrow[{=}]{按第1行展开}1\times \left| \begin{matrix} 7 & 3 \\ 2 & 2 \\ \end{matrix} \right|-0\times \left| \begin{matrix} 2 & 3 \\ 5 & 2 \\ \end{matrix} \right|+0\times \left| \begin{matrix} 2 & 7 \\ 5 & 2 \\ \end{matrix} \right|=8. \\ & \left| \begin{matrix} 1 & 0 & 0 \\ 2 & 7 & 3 \\ 5 & 2 & 2 \\ \end{matrix} \right|\xrightarrow[{=}]{按第1列展开}1\times \left| \begin{matrix} 7 & 3 \\ 2 & 2 \\ \end{matrix} \right|-2\times \left| \begin{matrix} 0 & 0 \\ 2 & 2 \\ \end{matrix} \right|+5\times \left| \begin{matrix} 0 & 0 \\ 7 & 3 \\ \end{matrix} \right|=8. \\ \end{aligned} \right. ⎩⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧∣∣∣∣∣∣125072032∣∣∣∣∣∣按第1行展开=1×∣∣∣∣7232∣∣∣∣−0×∣∣∣∣2532∣∣∣∣+0×∣∣∣∣2572∣∣∣∣=8.∣∣∣∣∣∣125072032∣∣∣∣∣∣按第1列展开=1×∣∣∣∣7232∣∣∣∣−2×∣∣∣∣0202∣∣∣∣+5×∣∣∣∣0703∣∣∣∣=8.
{ ∣ 1 0 − 5 6 2 − 1 5 − 11 6 ∣ → = 按 第 1 行 展 开 1 × ∣ 2 − 1 − 11 6 ∣ − 0 × ∣ 6 − 1 5 6 ∣ + ( − 5 ) × ∣ 6 2 5 − 11 ∣ = 1 + 380 = 381. ∣ 1 0 − 5 6 2 − 1 5 − 11 6 ∣ → = 按 第 1 列 展 开 1 × ∣ 2 − 1 − 11 6 ∣ − 6 × ∣ 0 − 5 − 11 6 ∣ + 5 × ∣ 0 − 5 2 − 1 ∣ = 1 + 330 + 50 = 381. \left\{ \begin{aligned} & \left| \begin{matrix} 1 & 0 & -5 \\ 6 & 2 & -1 \\ 5 & -11 & 6 \\ \end{matrix} \right|\xrightarrow[{=}]{按第1行展开}1\times \left| \begin{matrix} 2 & -1 \\ -11 & 6 \\ \end{matrix} \right|-0\times \left| \begin{matrix} 6 & -1 \\ 5 & 6 \\ \end{matrix} \right|+\left( -5 \right)\times \left| \begin{matrix} 6 & 2 \\ 5 & -11 \\ \end{matrix} \right|=1+380=381. \\ & \left| \begin{matrix} 1 & 0 & -5 \\ 6 & 2 & -1 \\ 5 & -11 & 6 \\ \end{matrix} \right|\xrightarrow[{=}]{按第1列展开}1\times \left| \begin{matrix} 2 & -1 \\ -11 & 6 \\ \end{matrix} \right|-6\times \left| \begin{matrix} 0 & -5 \\ -11 & 6 \\ \end{matrix} \right|+5\times \left| \begin{matrix} 0 & -5 \\ 2 & -1 \\ \end{matrix} \right|=1+330+50=381. \\ \end{aligned} \right. ⎩⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧∣∣∣∣∣∣16502−11−5−16∣∣∣∣∣∣按第1行展开=1×∣∣∣∣2−11−16∣∣∣∣−0×∣∣∣∣65−16∣∣∣∣+(−5)×∣∣∣∣652−11∣∣∣∣=1+380=381.∣∣∣∣∣∣16502−11−5−16∣∣∣∣∣∣按第1列展开=1×∣∣∣∣2−11−16∣∣∣∣−6×∣∣∣∣0−11−56∣∣∣∣+5×∣∣∣∣02−5−1∣∣∣∣=1+330+50=381.
2. 将下列行列式分别按第二行及第三列展开求值并比较其结果:
∣ 2 3 5 1 2 0 0 3 8 ∣ , ∣ 3 2 − 2 2 − 1 3 9 6 − 7 ∣ \left| \begin{matrix} 2 & 3 & 5 \\ 1 & 2 & 0 \\ 0 & 3 & 8 \\\end{matrix} \right|,\left| \begin{matrix} 3 & 2 & -2 \\ 2 & -1 & 3 \\ 9 & 6 & -7 \\\end{matrix} \right| ∣∣∣∣∣∣210323508∣∣∣∣∣∣,∣∣∣∣∣∣3292−16−23−7∣∣∣∣∣∣
解
{ ∣ 2 3 5 1 2 0 0 3 8 ∣ → 按 r 2 展 开 1 × ( − 1 ) 2 + 1 × ∣ 3 5 3 8 ∣ + 2 × ( − 1 ) 2 + 2 × ∣ 2 5 0 8 ∣ + 0 × ( − 1 ) 2 + 3 × ∣ 2 3 0 3 ∣ = − 9 + 32 + 0 = 23. ∣ 2 3 5 1 2 0 0 3 8 ∣ → 按 c 3 展 开 5 × ( − 1 ) 1 + 3 × ∣ 1 2 0 3 ∣ + 0 × ( − 1 ) 2 + 3 × ∣ 2 3 0 3 ∣ + 8 × ( − 1 ) 3 + 3 × ∣ 2 3 1 2 ∣ = 15 + 0 + 8 = 23. \left\{ \begin{aligned} & \left| \begin{matrix} 2 & 3 & 5 \\ 1 & 2 & 0 \\ 0 & 3 & 8 \\ \end{matrix} \right|\xrightarrow[{}]{按{
{r}_{2}}展开}1\times {
{\left( -1 \right)}^{2+1}}\times \left| \begin{matrix} 3 & 5 \\ 3 & 8 \\ \end{matrix} \right|+2\times {
{\left( -1 \right)}^{2+2}}\times \left| \begin{matrix} 2 & 5 \\ 0 & 8 \\ \end{matrix} \right|+0\times {
{\left( -1 \right)}^{2+3}}\times \left| \begin{matrix} 2 & 3 \\ 0 & 3 \\ \end{matrix} \right|=-9+32+0=23. \\ & \left| \begin{matrix} 2 & 3 & 5 \\ 1 & 2 & 0 \\ 0 & 3 & 8 \\ \end{matrix} \right|\xrightarrow[{}]{按{
{c}_{3}}展开}5\times {
{\left( -1 \right)}^{1+3}}\times \left| \begin{matrix} 1 & 2 \\ 0 & 3 \\ \end{matrix} \right|+0\times {
{\left( -1 \right)}^{2+3}}\times \left| \begin{matrix} 2 & 3 \\ 0 & 3 \\ \end{matrix} \right|+8\times {
{\left( -1 \right)}^{3+3}}\times \left| \begin{matrix} 2 & 3 \\ 1 & 2 \\ \end{matrix} \right|=15+0+8=23. \\ \end{aligned} \right. ⎩⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧∣∣∣∣∣∣210323508∣∣∣∣∣∣按r2展开1×(−1)2+1×∣∣∣∣3358∣∣∣∣+2×(−1)2+2×∣∣∣∣2058∣∣∣∣+0×(−1)2+3×∣∣∣∣2033∣∣∣∣=−9+32+0=23.∣∣∣∣∣∣210323508∣∣∣∣∣∣按c3展开5×(−1)1+3×∣∣∣∣1023∣∣∣∣+0×(−1)2+3×∣∣∣∣2033∣∣∣∣+8×(−1)3+3×∣∣∣∣2132∣∣∣∣=15+0+8=23.
{ ∣ 3 2 − 2 2 − 1 3 9 6 − 7 ∣ → 按 r 2 展 开 2 × ( − 1 ) 2 + 1 × ∣ 2 − 2 6 − 7 ∣ + ( − 1 ) × ( − 1 ) 2 + 2 × ∣ 3 − 2 9 − 7 ∣ + 3 × ( − 1 ) 2 + 3 × ∣ 3 2 9 6 ∣ = 4 + 3 + 0 = 7. ∣ 3 2 − 2 2 − 1 3 9 6 − 7 ∣ → 按 c 3 展 开 ( − 2 ) × ( − 1 ) 1 + 3 × ∣ 2 − 1 9 6 ∣ + 3 × ( − 1 ) 2 + 3 × ∣ 3 2 9 6 ∣ + ( − 7 ) × ( − 1 ) 3 + 3 × ∣ 3 2 2 − 1 ∣ = − 42 + 0 + 49 = 7. \left\{ \begin{aligned} & \left| \begin{matrix} 3 & 2 & -2 \\ 2 & -1 & 3 \\ 9 & 6 & -7 \\ \end{matrix} \right|\xrightarrow[{}]{按{
{r}_{2}}展开}2\times {
{\left( -1 \right)}^{2+1}}\times \left| \begin{matrix} 2 & -2 \\ 6 & -7 \\ \end{matrix} \right|+\left( -1 \right)\times {
{\left( -1 \right)}^{2+2}}\times \left| \begin{matrix} 3 & -2 \\ 9 & -7 \\ \end{matrix} \right|+3\times {
{\left( -1 \right)}^{2+3}}\times \left| \begin{matrix} 3 & 2 \\ 9 & 6 \\ \end{matrix} \right|=4+3+0=7. \\ & \left| \begin{matrix} 3 & 2 & -2 \\ 2 & -1 & 3 \\ 9 & 6 & -7 \\ \end{matrix} \right|\xrightarrow[{}]{按{
{c}_{3}}展开}\left( -2 \right)\times {
{\left( -1 \right)}^{1+3}}\times \left| \begin{matrix} 2 & -1 \\ 9 & 6 \\ \end{matrix} \right|+3\times {
{\left( -1 \right)}^{2+3}}\times \left| \begin{matrix} 3 & 2 \\ 9 & 6 \\ \end{matrix} \right|+\left( -7 \right)\times {
{\left( -1 \right)}^{3+3}}\times \left| \begin{matrix} 3 & 2 \\ 2 & -1 \\ \end{matrix} \right|=-42+0+49=7. \\ \end{aligned} \right. ⎩⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧∣∣∣∣∣∣3292−16−23−7∣∣∣∣∣∣按r2展开2×(−1)2+1×∣∣∣∣26