索引
- 同余式定义
- 定理: ∃ a ∈ Z , f ( a ) ≡ 0 ( m o d m ) ⇔ ∀ x ≡ a ( m o d m ) , f ( x ) ≡ 0 ( m o d m ) \exists a\in \mathbb{Z},\text{ }f\left( a \right)\equiv 0\left( \bmod m \right)\text{ }\Leftrightarrow \text{ }\forall x\equiv a\left( \bmod m \right),\text{ }f\left( x \right)\equiv 0\left( \bmod m \right) ∃a∈Z, f(a)≡0(modm) ⇔ ∀x≡a(modm), f(x)≡0(modm)
- 定理: 一次同余式 a x ≡ b ( m o d m ) , a ≡ 0 ( m o d m ) ax\equiv b\left( \bmod m \right),\text{ }a\cancel{\equiv }0\left( \bmod m \right) ax≡b(modm), a≡ 0(modm)有(整数)解 ⇔ gcd ( a , m ) ∣ b \Leftrightarrow \left. \gcd \left( a,m \right) \right|b ⇔gcd(a,m)∣b
- 例题与练习
同余式定义
m ∈ Z > 0 m\in {
{\mathbb{Z}}_{>0}} m∈Z>0, a i ∈ Z {
{a}_{i}}\in \mathbb{Z} ai∈Z, f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 f\left( x \right)={
{a}_{n}}{
{x}^{n}}+{
{a}_{n-1}}{
{x}^{n-1}}+\cdots +{
{a}_{1}}x+{
{a}_{0}} f(x)=anxn+an−1xn−1+⋯+a1x+a0,称
f ( x ) ≡ 0 ( m o d m ) f\left( x \right)\equiv 0\left( \bmod m \right) f(x)≡0(modm)
为模 m m m的同余式。若 a n ≡ 0 ( m o d m ) {
{a}_{n}}\cancel{\equiv }0\left( \bmod m \right) an≡
0(modm),则称 n n n为该同余式的次数。
定理: ∃ a ∈ Z , f ( a ) ≡ 0 ( m o d m ) ⇔ ∀ x ≡ a ( m o d m ) , f ( x ) ≡ 0 ( m o d m ) \exists a\in \mathbb{Z},\text{ }f\left( a \right)\equiv 0\left( \bmod m \right)\text{ }\Leftrightarrow \text{ }\forall x\equiv a\left( \bmod m \right),\text{ }f\left( x \right)\equiv 0\left( \bmod m \right) ∃a∈Z, f(a)≡0(modm) ⇔ ∀x≡a(modm), f(x)≡0(modm)
证明
- ( ⇐ ) \left( \Leftarrow \right) (⇐)
a ≡ a ( m o d m ) a\equiv a\left( \bmod m \right) a≡a(modm),推理是显然的。 - ( ⇒ ) \left( \Rightarrow \right) (⇒)
∀ x ≡ a ( m o d m ) , x − a ≡ 0 ( m o d m ) ⇒ m ∣ ( x − a ) ⇒ ∃ k ∈ Z , s . t . \forall x\equiv a\left( \bmod m \right),\text{ }x-a\equiv 0\left( \bmod m \right)\text{ }\Rightarrow \text{ }\left. m \right|\left( x-a \right)\text{ }\Rightarrow \text{ }\exists k\in \mathbb{Z},\text{ }s.t. ∀x≡a(modm), x−a≡0(modm) ⇒ m∣(x−a) ⇒ ∃k∈Z, s.t.
x − a = k m ⇔ a = x − k m x-a=km\text{ }\Leftrightarrow \text{ }a=x-km x−a=km ⇔ a=x−km
f ( a ) ≡ 0 ⇒ 0 ≡ f ( x − k m ) = a 0 + ∑ j = 1 n a j ( x − k m ) j ≡ a 0 + ∑ j = 1 n ( x − 0 ) j = ∑ j = 0 n a j x j = f ( x ) m o d m \begin{matrix} f\left( a \right)\equiv 0 \\ \begin{aligned} & \Rightarrow 0\equiv f\left( x-km \right)={ {a}_{0}}+\sum\limits_{j=1}^{n}{ { {a}_{j}}{ {\left( x-km \right)}^{j}}} \\ & \equiv { {a}_{0}}+\sum\limits_{j=1}^{n}{ { {\left( x-0 \right)}^{j}}}=\sum\limits_{j=0}^{n}{ { {a}_{j}}{ {x}^{j}}}=f\left( x \right)\text{ }\bmod m \\ \end{aligned} \\ \end{matrix} f(a)≡0⇒0≡f(x−km)=a0+j=1∑naj(x−km)j≡a0+j=1∑n(x−0)j=j=0∑najxj=f(x) modm
定理: 一次同余式 a x ≡ b ( m o d m ) , a ≡ 0 ( m o d m ) ax\equiv b\left( \bmod m \right),\text{ }a\cancel{\equiv }0\left( \bmod m \right) ax≡b(modm), a≡ 0(modm)有(整数)解 ⇔ gcd ( a , m ) ∣ b \Leftrightarrow \left. \gcd \left( a,m \right) \right|b ⇔gcd(a,m)∣b
证明
a x ≡ b ( m o d m ) ⇔ a x − b ≡ 0 ( m o d m ) ⇔ m ∣ ( a x − b ) ⇔ ∃ y ∈ Z , s.t . a x − b = m y ⇔ a x − m y = b \begin{aligned} & \text{ }ax\equiv b\left( \bmod m \right) \\ & \Leftrightarrow ax-b\equiv 0\left( \bmod m \right) \\ & \Leftrightarrow \left. m \right|\left( ax-b \right) \\ & \Leftrightarrow \exists y\in \mathbb{Z},\text{ s}\text{.t}.\text{ }ax-b=my \\ & \Leftrightarrow ax-my=b \\ \end{aligned} ax≡b(modm)⇔ax−b≡0(modm)⇔m∣(ax−b)⇔∃y∈Z, s.t. ax−b=my⇔ax−my=b
而 a x − m y = b ax-my=b ax−my=b有解 ⇔ gcd ( a , − m ) = gcd ( a , m ) ∣ b \Leftrightarrow \gcd \left( a,-m \right)=\left. \gcd \left( a,m \right) \right|b ⇔gcd(a,−m)=gcd(a,m)∣b
例题与练习
-
解同余式
4 x ≡ 13 m o d 47 4x\equiv 13\text{ }\bmod 47 4x≡13 mod47
解
gcd ( 4 , 47 ) = 1 ∣ 13 \gcd \left( 4,47 \right)=\left. 1 \right|13 gcd(4,47)=1∣13,因此同余式有解。
4 x ≡ 13 m o d 47 ⇔ ( 4 x ⋅ 12 ) ≡ ( 13 × 12 ) = 156 ≡ 15 m o d 47 ⇔ 48 x ≡ 15 m o d 47 ⇔ x ≡ 15 m o d 47 ( ∵ 48 = 47 × 1 + 1 ) \begin{aligned} & 4x\equiv 13\text{ }\bmod 47 \\ & \Leftrightarrow \left( 4x\centerdot 12 \right)\equiv \left( 13\times 12 \right)=156\equiv 15\text{ }\bmod 47 \\ & \Leftrightarrow 48x\equiv 15\text{ }\bmod 47 \\ & \Leftrightarrow x\equiv 15\text{ }\bmod 47\text{ }\left( \because 48=47\times 1+1 \right) \\ \end{aligned} 4x≡13 mod47⇔(4x⋅12)≡(13×12)=156≡15 mod47⇔48x≡15 mod47⇔x≡15 mod47 (∵48=47×1+1)
-
解同余式
10 x ≡ 6 ( m o d 12 ) 10x\equiv 6\left( \bmod 12 \right) 10x≡6(mod12)
解
10 x ≡ 6 ( m o d 12 ) ⇔ 10 2 x ≡ 6 2 ( m o d 12 2 ) ⇔ 5 x ≡ 3 ( m o d 6 ) \begin{aligned} & \text{ }10x\equiv 6\left( \bmod 12 \right) \\ & \Leftrightarrow \frac{10}{2}x\equiv \frac{6}{2}\left( \bmod \frac{12}{2} \right) \\ & \Leftrightarrow 5x\equiv 3\left( \bmod 6 \right) \\ \end{aligned} 10x≡6(mo