【BZOJ2154】—Crash的数字表格(莫比乌斯反演+整除分块)

本文详细解析了一种高效算法,用于解决求解∑i=1n∑j=1mlcm(i,j)的问题,其中n,m≤1e7。通过转换为gcd形式,利用莫比乌斯函数和整除分块技巧,实现了O(n)的时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门

题意:求 ∑ i = 1 n ∑ j = 1 m l c m ( i , j ) , n , m ≤ 1 e 7 \sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j),n,m\le1e7 i=1nj=1mlcm(i,j),n,m1e7


S o l u t i o n Solution Solution

考虑到 l c m lcm lcm无法处理,我们先变成 g c d gcd gcd的形式

a n s = ∑ i = 1 n ∑ j = 1 m i ∗ j g c d ( i , j ) ans=\sum_{i=1}^{n}\sum_{j=1}^{m}\frac {i*j}{gcd(i,j)} ans=i=1nj=1mgcd(i,j)ij

考虑枚举 g c d gcd gcd

a n s = ∑ d = 1 m i n ( n , m ) ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = d ] i j d ans=\sum_{d=1}^{min(n,m)}\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)=d]\frac {ij}d ans=d=1min(n,m)i=1nj=1m[gcd(i,j)=d]dij = ∑ d = 1 m i n ( n , m ) ∑ d ∣ i n ∑ d ∣ j m [ g c d ( i , j ) = d ] i j d =\sum_{d=1}^{min(n,m)}\sum_{d|i}^{n}\sum_{d|j}^{m}[gcd(i,j)=d]\frac {ij}d =d=1min(n,m)dindjm[gcd(i,j)=d]dij

i ′ = d i , j ′ = d j i'=\frac d i,j'=\frac d j i=id,j=jd(即从枚举 d d d的倍数变成枚举是 d d d的几倍)
则(为了方便仍用 i , j i,j i,j表示 i ′ , j ′ i',j' i,j)

a n s = ∑ d = 1 m i n ( n , m ) ∑ i = 1 n d ∑ j = 1 m d [ g c d ( d i , d j ) = d ] i d ∗ j d d ans=\sum_{d=1}^{min(n,m)}\sum_{i=1}^{\frac n d}\sum_{j=1}^{\frac m d}[gcd(di,dj)=d] \frac{id*jd}{d} ans=d=1min(n,m)i=1dnj=1dm[gcd(di,dj)=d]didjd = ∑ d = 1 m i n ( n , m ) d ∑ i = 1 n d ∑ j = 1 m d [ g c d ( i , j ) = 1 ] i j =\sum_{d=1}^{min(n,m)}d\sum_{i=1}^{\frac n d}\sum_{j=1}^{\frac m d}[gcd(i,j)=1]ij =d=1min(n,m)di=1dnj=1dm[gcd(i,j)=1]ij

考虑有个莫比乌斯函数的简单结论 ∑ d ∣ n μ ( d ) = [ n = = 1 ] \sum_{d|n}\mu(d)=[n==1] dnμ(d)=[n==1]

考虑的式子中有个 [ g c d ( i , j ) = 1 ] [gcd(i,j)=1] [gcd(i,j)=1]
则:

a n s = ∑ d = 1 m i n ( n , m ) d ∑ i = 1 n d ∑ j = 1 m d ∑ T ∣ g c d ( i , j ) μ ( T ) i j ans=\sum_{d=1}^{min(n,m)}d\sum_{i=1}^{\frac n d}\sum_{j=1}^{\frac m d}\sum_{T|gcd(i,j)}\mu(T)ij ans=d=1min(n,m)di=1dnj=1dmTgcd(i,j)μ(T)ij

考虑把 T T T提到前面来:

a n s = ∑ d = 1 m i n ( n , m ) d ∑ T = 1 m i n ( n d , m d ) μ ( T ) ∑ i = 1 n d ∑ j = 1 m d i j [ T ∣ g c d ( i , j ) ] ans=\sum_{d=1}^{min(n,m)}d\sum_{T=1}^{min(\frac n d,\frac m d)}\mu(T)\sum_{i=1}^{\frac n d}\sum_{j=1}^{\frac m d}ij[T|gcd(i,j)] ans=d=1min(n,m)dT=1min(dn,dm)μ(T)i=1dnj=1dmij[Tgcd(i,j)]

考虑令 i ′ = i ∗ T , j ′ = j ∗ T i'=i*T,j'=j*T i=iT,j=jT
则(同样为了方便直接用 i , j i,j i,j表示了)

a n s = ∑ d = 1 m i n ( n , m ) d ∑ T = 1 m i n ( n d , m d ) μ ( T ) ∑ i = 1 n d T ∑ j = 1 m d T i j T 2 ans=\sum_{d=1}^{min(n,m)}d\sum_{T=1}^{min(\frac n d,\frac m d)}\mu(T)\sum_{i=1}^{\frac {n}{dT}}\sum_{j=1}^{\frac{m}{dT}}ijT^2 ans=d=1min(n,m)dT=1min(dn,dm)μ(T)i=1dTnj=1dTmijT2
= ∑ d = 1 m i n ( n , m ) d ∑ T = 1 m i n ( n d , m d ) μ ( T ) T 2 ∑ i = 1 n d T ∑ j = 1 m d T i j =\sum_{d=1}^{min(n,m)}d\sum_{T=1}^{min(\frac n d,\frac m d)}\mu(T)T^2\sum_{i=1}^{\frac {n}{dT}}\sum_{j=1}^{\frac{m}{dT}}ij =d=1min(n,m)dT=1min(dn,dm)μ(T)T2i=1dTnj=1dTmij

我们发现 ∑ i = 1 n d T ∑ j = 1 m d T i j \sum_{i=1}^{\frac {n}{dT}}\sum_{j=1}^{\frac{m}{dT}}ij i=1dTnj=1dTmij这一团是可以 O ( 1 ) O(1) O(1)求的
∑ i = 1 n ∑ j = 1 m i j = n ∗ ( n + 1 ) / 2 ∗ m ∗ ( m + 1 ) / 2 \sum_{i=1}^{n}\sum_{j=1}^{m}ij=n*(n+1)/2*m*(m+1)/2 i=1nj=1mij=n(n+1)/2m(m+1)/2

μ ( T ) T 2 \mu(T)T^2 μ(T)T2可以线性筛 μ \mu μ时求出

就可以先整除分块一下 d d d,得到 n d , m d \frac n d,\frac m d dn,dm的值后在里面套一个整除分块求

∑ T = 1 m i n ( n d , m d ) μ ( T ) T 2 ∑ i = 1 n d T ∑ j = 1 m d T i j \sum_{T=1}^{min(\frac n d,\frac m d)}\mu(T)T^2\sum_{i=1}^{\frac {n}{dT}}\sum_{j=1}^{\frac{m}{dT}}ij T=1min(dn,dm)μ(T)T2i=1dTnj=1dTmij这一团

总复杂度 O ( n ∗ n ) = O ( n ) O(\sqrt n *\sqrt n)=O(n) O(n n )=O(n)

#include<bits/stdc++.h>
using namespace std;
#define int long long
inline int read(){
	char ch=getchar();
	int res=0,f=1;
	while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}
	while(isdigit(ch))res=(res<<3)+(res<<1)+(ch^48),ch=getchar();
	return res*f;
}
const int N=10000005;
const int mod=20101009;
int mu[N],pr[N],vis[N],sum[N],tot,ans;
inline void init(){
	mu[1]=1;
	for(int i=2;i<N;i++){
		if(!vis[i])pr[++tot]=i,mu[i]=-1;
		for(int j=1;j<=tot&&i*pr[j]<N;j++){
			vis[pr[j]*i]=1;
			if(i%pr[j]==0)break;
			mu[i*pr[j]]=-mu[i];
		}
	}
	for(int i=1;i<N;i++){
		sum[i]=(sum[i-1]+(i*i)*mu[i])%mod;
	}
	//for(int i=20;i<=30;i++)cout<<sum[i]<<'\n';
}
inline int t(int n,int m){
	return (((n*(n+1)/2)%mod)*((m*(m+1)/2)%mod)%mod);
}
inline int calc(int n,int m){
	int p=min(n,m),res=0;
	for(int i=1,nxt;i<=p;i=nxt+1){
		nxt=min(n/(n/i),m/(m/i));
		res=(res+((sum[nxt]-sum[i-1]+mod)%mod)*t(n/i,m/i)%mod)%mod;
	}
	return res;
}
signed main(){
	init();
	int n=read(),m=read();
	int p=min(n,m);
	for(int i=1,nxt;i<=p;i=nxt+1){
		nxt=min(n/(n/i),m/(m/i));
		ans=(ans+(((nxt-i+1)*(nxt+i)/2)%mod)*calc(n/i,m/i)%mod)%mod;
	}
	cout<<ans<<'\n';
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值