【归档】设v1, v2, v3, v4张成V,证明v1 - v2, v2 - v3, v3 - v4, v4也张成V.

本文详细探讨了向量空间中一组向量v1,v2,v3,v4能够生成整个空间时,证明由这组向量构成的差分向量v1-v2, v2-v3, v3-v4, v4同样可以生成该空间。通过线性组合的性质,文章展示了如何找到新的系数,使得差分向量的线性组合等于任意向量v。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Note: 旧的wordpress博客弃用,于是将以前的笔记搬运回来。


Question:
Suppose v1,v2,v3,v4v_1, v_2, v_3, v_4v1,v2,v3,v4 spans VVV.
Prove that v1−v2v_1 - v_2v1v2, v2−v3v_2 - v_3v2v3, v3−v4v_3 - v_4v3v4, v4v_4v4 also spans VVV.
Solution:
Let v∈Vv \in VvV. Since (v1,v2,v3,v4)(v_1, v_2, v_3, v_4)(v1,v2,v3,v4) spans VVV, we know that there exist scalars a1,a2,a3,a4∈Fa_1, a_2, a_3, a_4 \in \mathbb{F}a1,a2,a3,a4F such that:
a1v1+a2v2+a3v3+a4v4=va_1 v_1 + a_2 v_2 + a_3 v_3 + a_4 v_4 = va1v1+a2v2+a3v3+a4v4=v.
We seek coefficient b1,b2,b3,b4∈Fb_1, b_2, b_3, b_4 \in \mathbb{F}b1,b2,b3,b4F such that:
b1(v1−v2)+b2(v2−v3)+b3(v3−v4)+b4v4=v=a1v1+a2v2+a3v3+a4v4b_1 (v_1 - v_2) + b_2 (v_2 - v_3) + b_3 (v_3 - v_4) + b_4 v_4 = v = a_1 v_1 + a_2 v_2 + a_3 v_3 + a_4 v_4b1(v1v2)+b2(v2v3)+b3(v3v4)+b4v4=v=a1v1+a2v2+a3v3+a4v4.
Using distributive property, we get:
b1v1+(b2−b1)v2+(b3−b2)v3+(b4−b3)v4=a1v1+a2v2+a3v3+a4v4b_1 v_1 + (b_2 - b_1)v_2 + (b_3 - b_2)v_3 + (b_4 - b_3)v_4 = a_1 v_1 + a_2 v_2 + a_3 v_3 + a_4 v_4b1v1+(b2b1)v2+(b3b2)v3+(b4b3)v4=a1v1+a2v2+a3v3+a4v4.
So we get:
b1=a1,bi−bi−1=aib_1 = a_1, b_i - b_{i - 1}= a_ib1=a1,bibi1=ai. (i∈[2,4])(i \in [2, 4])(i[2,4])
Now we claim that for each bib_ibi, there exist bi=∑k=1iakb_i = \sum_{k = 1}^i a_kbi=k=1iak. Clearly this is correct for b1b_1b1, since b1=a1b_1 = a_1b1=a1. Now we assume j∈[2,3]j \in [2, 3]j[2,3] and bj=∑k=1jakb_j = \sum_{k = 1}^j a_kbj=k=1jak. Since bi−bi−1=aib_i - b_{i - 1}= a_ibibi1=ai, we can deduce:
bj+1=bj+aj+1=∑k=1jak+aj+1=∑k=1j+1akb_{j + 1} = b_j + a_{j+1} = \sum_{k = 1}^j a_k+ a_{j + 1} = \sum_{k = 1}^{j + 1} a_kbj+1=bj+aj+1=k=1jak+aj+1=k=1j+1ak.
So the formula is proved by induction.
This proved that:
a1(v1−v2)+(a1+a2)(v2−v3)+(a1+a2+a3)(v4−v3)+(a1+a2+a3+a4)v4=va_1(v_1 - v_2) + (a_1 + a_2)(v_2 - v_3) + (a_1 + a_2 + a_3)(v_4 - v_3) + (a_1+a_2+a_3+a_4)v_4 = va1(v1v2)+(a1+a2)(v2v3)+(a1+a2+a3)(v4v3)+(a1+a2+a3+a4)v4=v.
Since for each v∈span(v1,v2,v3,v4)v \in span(v_1, v_2, v_3, v_4)vspan(v1,v2,v3,v4) there exist this formula, the list v1−v2,v2−v3,v3−v4,v4v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4v1v2,v2v3,v3v4,v4 spans VVV.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值