Note: 旧的wordpress博客弃用,于是将以前的笔记搬运回来。
Foreword:
We use the operator “⊕\oplus⊕” to express “direct sum”.
Question:
函数f:R→Rf: R \rightarrow Rf:R→R称为偶函数,如果对所有x∈Rx \in Rx∈R均有f(−x)=f(x)f(-x) = f(x)f(−x)=f(x)。函数f:R→Rf: R \rightarrow Rf:R→R称为奇函数,如果对所有x∈Rx \in Rx∈R均有f(−x)=−f(x)f(-x) = -f(x)f(−x)=−f(x)。用UeU_eUe表示RRR上的实值偶函数的集合,用UoU_oUo表示RRR上实值奇函数的集合,证明RR=ue⊕UoR^R = u_e \oplus U_oRR=ue⊕Uo.
Solution:
Let
Ue={f:R→RU_e = \{f: \mathbb{R} \rightarrow \mathbb{R}Ue={f:R→R : such that f is even}\}},
Uo={f:R→RU_o = \{f: \mathbb{R} \rightarrow \mathbb{R}Uo={f:R→R : such that f is odd}\}}.
For each function f(x)∈RRf(x) \in \mathbb{R}^\mathbb{R}f(x)∈RR, we can divide it into:
fe(x)=f(x)+f(−x)2f_e(x) = \frac{f(x) + f(-x)}{2}fe(x)=2f(x)+f(−x),
fo(x)=f(x)−f(−x)2f_o(x) = \frac{f(x) - f(-x)}{2}fo(x)=2f(x)−f(−x).
Clearly f(x)=fo(x)+fe(x)f(x) = f_o(x) + f_e(x)f(x)=fo(x)+fe(x).
Therefor RR=Ue+Uo\mathbb{R}^\mathbb{R} = U_e + U_oRR=Ue+Uo.
Since Ue∩Uo=f0(x)=0U_e \cap U_o = f_0(x) = 0Ue∩Uo=f0(x)=0, RR=Ue⊕Uo\mathbb{R}^\mathbb{R} = U_e \oplus U_oRR=Ue⊕Uo.