木材识别与糖尿病预测的技术探索
1. 木材识别技术
1.1 机器学习与深度学习方法性能对比
在木材识别领域,多种机器学习和深度学习方法被应用,其性能对比如下:
| 方法 | K1 | K2 | K3 | K4 | K5 | AVG ± S.D. |
| — | — | — | — | — | — | — |
| HOG - SVM | 67.00% | 67.00% | 63.00% | 75.00% | 75.00% | 69.40% ± 5.37% |
| HOG - KNN | 63.00% | 54.00% | 48.00% | 69.00% | 65.00% | 59.80% ± 8.58% |
| LBP - SVM | 38.00% | 38.00% | 38.00% | 39.00% | 43.00% | 39.20% ± 2.17% |
| LBP - KNN | 38.00% | 23.00% | 23.00% | 25.00% | 24.00% | 26.60% ± 6.43% |
| GLCM - SVM | 48.00% | 50.00% | 46.00% | 57.00% | 61.00% | 52.00% ± 6.35% |
| GLCM - KNN | 29.00% | 40.00% | 33.00% | 31.00% | 35.00% | 34.00% ± 4.22% |
| Resnet | 88.76% | 81.40% | 81.40% | 81.78% | 83.33% | 83.33% ± 3.14% |
| Alexnet | 88.37% | 81.
超级会员免费看
订阅专栏 解锁全文
47

被折叠的 条评论
为什么被折叠?



