题意:给定n个点m条边的无向图(边权全为1),让你去掉最多的边使得d(s1, t1) <= l1 && d(s2, t2) <= l2,若不能满足输出-1,反之输出可以去掉的最多边数。
思路:SPFA预处理所有点之间的距离。求出在满足d(s1, t1) <= l1 && d(s2, t2) <= l2的前提下,路径需要的最少边数ans,答案就是m - ans。
方法是:用dist[i][j]存储最短路。枚举d(s1, t1) 和 d(s2, t2)这两条路径上可能重合的路径d(i, j)
(1)D1=dist[s1][i] + dist[i][j] + dist[j][t1] <= l1 && D2=dist[s2][i] + dist[i][j] + dist[j][t2] <= l2
(2)D1=dist[s1][i] + dist[i][j] + dist[j][t1] <= l1 && D2=dist[s2][j] + dist[j][i] + dist[i][t2] <= l2
(3)D1=dist[s1][j] + dist[j][i] + dist[i][t1] <= l1 && D2=dist[s2][i] + dist[i][j] + dist[j][t2]
<= l2
(4)D1=dist[s1][j] + dist[j][i] + dist[i][t1]
<= l1 && D2=dist[s2][j] + dist[j][i] + dist[i][t2] <= l2
更新答案为ans = min(ans, D1 + D2 - dist[i][j])。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<string>
#include<cstring>
#include<iomanip>
#include<iostream>
#include<stack>
#include<cmath>
#include<map>
#include<vector>
#define inf 0x3f3f3f3f
#define INF 1000000000
#define bug1 cout<<"bug1"<<endl;
#define bug2 cout<<"bug2"<<endl;
#define bug3 cout<<"bug3"<<endl;
using namespace std;
typedef long long ll;
const int maxn = 3000 + 5;
int n,m;
int dist[maxn][maxn];int tol;
int head[maxn];
int vis[maxn];
struct Edge{
int v,nxt;
}edge[maxn*2];
void addedge(int u,int v){
edge[tol].v=v;edge[tol].nxt=head[u];
head[u]=tol++;
}
void spfa(int s,int *d){
queue<int>q;
memset(vis,0,sizeof(vis));
q.push(s);d[s]=0;
while(!q.empty()){
int u=q.front();q.pop();
vis[u]=0;
for(int i=head[u];i!=-1;i=edge[i].nxt){
int v=edge[i].v;
if(d[v]>d[u]+1){
d[v]=d[u]+1;
if(!vis[v]){
vis[v]=1;
q.push(v);
}
}
}
}
}
void init(){
memset(head,-1,sizeof(head));
memset(dist,inf,sizeof(dist));
tol=0;
}
int main()
{
while(~scanf("%d%d",&n,&m)) {
init();
for(int i = 1; i <= m; i++) {
int u,v;scanf("%d%d",&u,&v);
addedge(u,v);
addedge(v,u);
}
for(int i = 1; i <= n; i++)spfa(i,dist[i]);
int s1,t1,l1,s2,t2,l2;
scanf("%d%d%d%d%d%d",&s1,&t1,&l1,&s2,&t2,&l2);
if(dist[s1][t1]>l1||dist[s2][t2]>l2){
printf("-1\n");
continue;
}
int res = dist[s1][t1]+dist[s2][t2];
for(int i = 1; i <= n; i++) {
for(int j = i; j <= n; j++) {
int w1 = min(dist[s1][i]+dist[i][j]+dist[j][t1], dist[s1][j]+dist[j][i]+dist[i][t1]);
int w2 = min(dist[s2][i]+dist[i][j]+dist[j][t2], dist[s2][j]+dist[j][i]+dist[i][t2]);
if(w1>l1||w2>l2)continue;
res = min(res,w1+w2-dist[i][j]);
}
}
printf("%d\n", m - res);
}
return 0;
}
1343

被折叠的 条评论
为什么被折叠?



