参考:http://blog.youkuaiyun.com/yew1eb/article/details/38360253
题目链接:
http://acdream.info/problem?pid=1171
分析:
很容易想到二分图模型(n行左端点,m列右端点) --> 有上下界的费用流
每行每列取数的个数不能少于R[i] / C[i], 问取得数总和最小是多少Min_Sum?
转化为
每行每列取数的个数不多于 m-R[i] / n - C[i],问取得数总和最大是多少Max_Sum?
Min_Sum = All_Sum - Max_Sum
总数 - 最大费用最大流即可
这样就把有上下界的费用流问题转化为(只有上界)普通的费用流问题了。
心得:注意这个地方的最大费用最大流要掌握原理:
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn = 202 + 10;
const int INF = 1000000000;
typedef long long LL;
struct Edge {
int from, to, cap, flow, cost;
};
struct MCMF { //<span style="font-size:14px;">最大费用最大流</span>
int n, m, s, t;
vector<Edge> edges;
vector<int> G[maxn];
int inq[maxn]; // 是否在队列中
int d[maxn]; // Bellman-Ford
int p[maxn]; // 上一条弧
int a[maxn]; // 可改进量
void init(int n) {
this->n = n;
for(int i = 0; i < n; i++) G[i].clear();
edges.clear();
}
void AddEdge(int from, int to, int cap, int cost) {
edges.push_back((Edge){from, to, cap, 0, cost});
edges.push_back((Edge){to, from, 0, 0, -cost});
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool BellmanFord(int s, int t, LL& ans) {
for(int i = 0; i <= t; i++) d[i] = -INF; //与最小费用最大流相反(d[i]=INF)
memset(inq, 0, sizeof(inq));
d[s] = 0; inq[s] = 1; p[s] = 0; a[s] = INF;
queue<int> Q;
Q.push(s);
while(!Q.empty()) {
int u = Q.front(); Q.pop();
inq[u] = 0;
for(int i = 0; i < G[u].size(); i++) {
Edge& e = edges[G[u][i]];
if(e.cap > e.flow && d[e.to] < d[u] + e.cost) { <span style="font-family: Arial, Helvetica, sans-serif;">//与最小费用最大流相反(d[e.to] < d[u] + e.cost )</span>
d[e.to] = d[u] + e.cost;
p[e.to] = G[u][i];
a[e.to] = min(a[u], e.cap - e.flow);
if(!inq[e.to]) { Q.push(e.to); inq[e.to] = 1; }
}
}
}
if(d[t] < 0) return false; //<span style="font-family: Arial, Helvetica, sans-serif;">与最小费用最大流相反(d[i]>=0)</span>
ans += (LL)d[t] * (LL)a[t];
int u = t;
while(u != s) {
edges[p[u]].flow += a[t];
edges[p[u]^1].flow -= a[t];
u = edges[p[u]].from;
}
return true;
}
// 需要保证初始网络中没有负权圈
LL Mincost(int s, int t) {
LL cost = 0;
while(BellmanFord(s, t, cost));
return cost;
}
};
MCMF g;
int S, T;
LL SUM;
int a[60][60], R[60], C[60];
void init()
{
int n, m, i, j;
scanf("%d%d", &n, &m);
SUM = 0;
for(i=1; i<=n; ++i)
for(j=1; j<=m; ++j)
{
scanf("%d", &a[i][j]);
SUM += a[i][j];
}
for(i=1; i<=n; ++i) scanf("%d", &R[i]);
for(i=1; i<=m; ++i) scanf("%d", &C[i]);
S = 0, T = n + m + 1;
g.init(T);
for(i=1; i<=n; ++i)
{
g.AddEdge(S, i, m-R[i], 0);
}
for(i=1; i<=m; ++i)
{
g.AddEdge(i+n, T, n-C[i], 0);
}
for(i=1; i<=n; ++i)
for(j=1; j<=m; ++j)
{
g.AddEdge(i, j+n, 1, a[i][j]);
}
}
void solve()
{
LL t = g.Mincost(S, T);
printf("%I64d\n", SUM - t);
}
int main()
{
int T;
scanf("%d", &T);
while(T--)
{
init();
solve();
}
return 0;
}