from keras.layers import Input,Embedding,LSTM,Dense
from keras.models import Model
from keras import backend as K
word_size = 128
nb_features = 10000
nb_classes = 10
encode_size = 64
input = Input(shape=(None,))
embedded = Embedding(nb_features,word_size)(input)
encoder = LSTM(encode_size)(embedded)
predict = Dense(nb_classes, activation='softmax')(encoder)
def mycrossentropy(y_true, y_pred, e=0.1):
loss1 = K.categorical_crossentropy(y_true, y_pred)
loss2 = K.categorical_crossentropy(K.ones_like(y_pred)/nb_classes, y_pred)
return (1-e)*loss1 + e*loss2
model = Model(inputs=input, outputs=predict)
model.compile(optimizer='adam', loss=mycrossentropy)
keras 自定义目标函数demo
最新推荐文章于 2024-06-03 17:41:26 发布
本文介绍了如何在Keras中自定义复杂的损失函数,通过一个具体示例展示了自定义目标函数的方法,包括定义函数、集成到模型以及编译过程。
部署运行你感兴趣的模型镜像
您可能感兴趣的与本文相关的镜像
TensorFlow-v2.15
TensorFlow
TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型
2万+

被折叠的 条评论
为什么被折叠?



