keras 自定义目标函数demo

本文介绍了如何在Keras中自定义复杂的损失函数,通过一个具体示例展示了自定义目标函数的方法,包括定义函数、集成到模型以及编译过程。
部署运行你感兴趣的模型镜像
from keras.layers import Input,Embedding,LSTM,Dense
from keras.models import Model
from keras import backend as K

word_size = 128
nb_features = 10000
nb_classes = 10
encode_size = 64

input = Input(shape=(None,))
embedded = Embedding(nb_features,word_size)(input)
encoder = LSTM(encode_size)(embedded)
predict = Dense(nb_classes, activation='softmax')(encoder)

def mycrossentropy(y_true, y_pred, e=0.1):
    loss1 = K.categorical_crossentropy(y_true, y_pred)
    loss2 = K.categorical_crossentropy(K.ones_like(y_pred)/nb_classes, y_pred)
    return (1-e)*loss1 + e*loss2

model = Model(inputs=input, outputs=predict)
model.compile(optimizer='adam', loss=mycrossentropy)

keras自定义损失函数
Keras中自定义复杂的loss函数

Keras中自定义目标函数(损失函数)的简单方法

(Keras)——Keras中自定义目标函数(损失函数)

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值