Keras中自定义目标函数(损失函数)的简单方法

Keras作为一个深度学习库,非常适合新手。在做神经网络时,它自带了许多常用的目标函数,优化方法等等,基本能满足新手学习时的一些需求。具体包含目标函数优化方法。但它也支持用户自定义目标函数,下边介绍一种最简单的自定义目标函数的方法。

要实现自定义目标函数,自然想到先看下Keras中的目标函数是怎么定义的。查下源码发现在Keras/objectives.py中,Keras定义了一系列的目标函数。

def mean_squared_error(y_true, y_pred):
    return K.mean(K.square(y_pred - y_true), axis=-1)


def mean_absolute_error(y_true, y_pred):
    return K.mean(K.abs(y_pred - y_true), axis=-1)


def mean_absolute_percentage_error(y_true, y_pred):
    diff = K.abs((y_true - y_pred) / K.clip(K.ab
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值