
yolo
luoganttcc
微信:luogantt2
展开
-
yolov3 anchor 理解
yolov3 中的anchor 的框框是在训练集中聚类所得,在yolov3 中每个格子有9个anchor mask52= [0,1,2] mask26= [3,4,5] mask13= [6,7,8] anchors=[ 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326]yolov3 有9个anchor 点#!/usr/bin/env python3# -*- codin原创 2021-04-22 17:27:45 · 1992 阅读 · 0 评论 -
YOLOv3中Loss
yolov3 的 loss ,今天终于看完了yolov3-tf2 的源码YOLOv3中Loss部分计算代码 #终点的loss= obj_mask * box_loss_scale*sum((px1-tx1)**2+(px2-tx2)**2) #因为这里有obj_mask的存在,只考虑有目标点的loss xy_loss = obj_mask * box_loss_scale * \ tf.reduce_sum(t原创 2021-06-22 18:27:31 · 412 阅读 · 0 评论 -
tf.boolean_mask
import tensorflow as tftensor = [0, 1, 2, 3] # 1-D examplemask = np.array([True, False, True, False])c=tf.boolean_mask(tensor, mask)print(c)print('------------------------------')tensor = [[1, 2], [3, 4], [5, 6]] # 2-D examplemask = np.array([Tr原创 2021-06-21 18:55:28 · 118 阅读 · 0 评论 -
yolo loss 将图像标注的真实事坐标转换到anchor坐标
最近在看yolov3 的源码,在看yolo_loss的时候遇到了一个卡点,就是将真是标注的box终点坐标转换到anchor点的坐标 true_xy = true_xy * tf.cast(grid_size, tf.float32) - tf.cast(grid, tf.float32) raw_true_xy = y_true[l][..., :2] * grid_shapes[l][:] - gridimport tensorflow as tfimport原创 2021-06-21 17:15:57 · 448 阅读 · 0 评论 -
yolo_model to output理解
#!/usr/bin/env python3# -*- coding: utf-8 -*-"""Created on Thu Jun 17 14:48:19 2021@author: ledi"""from absl import flagsfrom absl.flags import FLAGSimport numpy as npimport tensorflow as tffrom tensorflow.keras import Modelfrom tensorflow.ker原创 2021-06-17 14:51:55 · 358 阅读 · 0 评论 -
soft-NMS算法理解
NMS算法的大致过程可以看原文这段话:First, it sorts all detection boxes on the basis of their scores. The detection box M with the maximum score is selected and all other detection boxes with a significant overlap (using a pre-defined threshold) with M are suppressed. T原创 2021-06-17 13:07:27 · 1031 阅读 · 1 评论 -
目标检测 nms非极大抑制算法
nms算法就是对同一个anhor 的box 进行基于阈值的去重# python3import numpy as np def py_nms(dets, thresh): """Pure Python NMS baseline.""" #x1、y1、x2、y2、以及score赋值 x1 = dets[:, 0] y1 = dets[:, 1] x2 = dets[:, 2] y2 = dets[:, 3] scores = dets[:, 4]原创 2021-06-16 13:20:14 · 341 阅读 · 0 评论 -
yolov3 特征转化为输出
#!/usr/bin/env python3# -*- coding: utf-8 -*-"""Created on Sun Jun 13 10:24:03 2021@author: ledi"""import pickleimport numpy as npimport tensorflow as tf# data_output = open('output_0.pkl','wb')# pickle.dump(output_0,data_output)# data_output原创 2021-06-13 14:12:00 · 550 阅读 · 0 评论 -
yolov3 数据预处理
githubimport tensorflow as tffrom absl.flags import FLAGS@tf.functiondef transform_targets_for_output(y_true, grid_size, anchor_idxs): #这个函数分别对比某一类anchors (一共是三类,每一类对应不同的尺寸的box) #每一类box 对应的尺寸翻倍 # y_true: (N, boxes, (x1, y1, x2, y2, cl原创 2021-06-10 20:20:24 · 521 阅读 · 0 评论 -
目标检测 算法yolov3解惑(一)之三种尺度的检测
def DarknetConv(x, filters, size, strides=1, batch_norm=True): if strides == 1: padding = 'same' else: x = ZeroPadding2D(((1, 0), (1, 0)))(x) # top left half-padding padding = 'valid' x = Conv2D(filters=filters, kernel_原创 2021-06-07 19:22:03 · 1043 阅读 · 0 评论 -
UpSampling2D用法
# import tensorflow as tffrom tensorflow.keras.layers import UpSampling2D,Inputimport numpyfrom tensorflow.keras import Modelx = numpy.array([[1, 2,3], [4, 5,6]])inputs = Input(shape=(2, 3, 1))out =UpSampling2D(size=(4, 4))(inputs)model = Model(in原创 2021-06-07 16:43:45 · 4371 阅读 · 0 评论 -
DarknetTiny模型结构
darknet 是yolov3 里用的模型,如下是是其模型结构#!/usr/bin/env python3# -*- coding: utf-8 -*-"""Created on Mon Jun 7 13:40:34 2021@author: ledi"""import numpy as npimport tensorflow as tffrom tensorflow.keras import Modelfrom tensorflow.keras.layers import (原创 2021-06-07 13:57:29 · 424 阅读 · 0 评论 -
yolov3 使用
系统版本:Ubuntu16.04显卡:GTX 1070翻译 + 整理地址: https://pjreddie.com/darknet/install/YOLO: 是实现实时物体检测的系统,Darknet是基于YOLO的框架darknet非常容易安装,它只有2个可选择的依赖:Opencv: 能支持更多格式的图像,并且得到实时的显示GPU: 利用GPU计算,能大大提升YOLO的识别帧率,画面更加流畅安装这两个依赖都必须要先安装基础版yolo—安装基础版yolo—首先将darknet从git原创 2021-01-09 11:09:57 · 282 阅读 · 0 评论 -
yolo资料
yolo 官网voc数据集下载原创 2019-03-15 15:24:07 · 163 阅读 · 0 评论 -
yolo 分辨男女
git链接python yolo.py原创 2019-03-15 15:20:34 · 2206 阅读 · 0 评论 -
使用 yolov3训练 voc2012
参考链接代码数据集合|python train.py原创 2019-03-15 15:15:14 · 1475 阅读 · 1 评论 -
训练 yolo 模型
代码加数据python train.py原创 2019-03-17 22:20:40 · 465 阅读 · 0 评论 -
ssd 的效果
原创 2019-03-18 10:56:24 · 179 阅读 · 0 评论 -
yolo算法原理
1原创 2019-03-18 11:57:40 · 357 阅读 · 0 评论 -
基于 YOLOV3 和 OpenCV的目标检测(PythonC++)[译]
链接原创 2019-06-10 11:51:40 · 581 阅读 · 0 评论 -
yolo 识别 狗狗自行车
darknet 链接原创 2019-03-15 17:22:18 · 937 阅读 · 0 评论