Semantic SLAM源码解析

本文详细解析了一个基于ROS的语义SLAM建图过程,从semantic_cloud.py出发,结合ORB_SLAM2进行位姿估计,通过octomap_generator_ros.cpp实现八叉树地图构建。在回调函数toggleUseSemanticColor中,将点云转换到世界坐标系,并利用ORB_SLAM的位姿信息映射到八叉树地图中,最终发布 octomap_full 地图供rviz显示。

这个语义SLAM建图是基于ROS的
下面上源码解析:

首先从semantic_cloud.py出发,这里接收相机读入的topic, 会得到RGB图和深度图,
同时会起orb_slam2计算位姿,我们这里不讨论orb_slam2的算法细节,那是另一个大话题了。

node: semantic_cloud:

point_type = PointType.SEMANTICS_MAX
self.mean = np.array([104.00699, 116.66877, 122.67892
Semantic SLAM是基于语义的同时定位与建图技术。它包含两个主要思路:Semantic Mapping和Real Semantic SLAMSemantic Mapping是指将语义信息与地图建立关联,以提高地图的语义理解能力。通过在建图过程中引入语义信息,可以更准确地表示环境中的物体和场景。这可以通过使用语义标签对地图上的特征点进行分类,或者将语义对象作为地图的一部分来实现。 Real Semantic SLAM是指在同时定位和建图的过程中,结合语义信息来提高定位和建图的精度和鲁棒性。相对于传统的SLAM技术,Real Semantic SLAM在定位和建图的过程中都考虑了语义信息的影响。这可以通过将语义标签与传感器数据进行关联来实现,例如使用深度学习算法对图像或激光数据进行语义分割,然后将分割结果与SLAM算法进行融合。 值得注意的是,仅实现Semantic Mapping并不等同于实现真正的Semantic SLAM。真正的Semantic SLAM需要在同时定位和建图的过程中使用语义信息来改善定位和建图的性能。 总而言之,Semantic SLAM是一种利用语义信息来提高同时定位和建图技术的方法。它包括Semantic Mapping和Real Semantic SLAM两个主要思路,前者主要关注地图的语义理解能力,后者则是在定位和建图的过程中考虑语义信息的影响。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [从5个经典工作开始看语义SLAM](https://blog.youkuaiyun.com/HamiCenby/article/details/104581116)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝羽飞鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值