We now consider the action of two vector operators in succession on a scalar or vector field. We can immediately discard four of the nine obvious combinations of grad, div and curl. where ϕ\phiϕ is a scalar field and a\boldsymbol{a}a is a vector field.
444 meaningless
these four combinations are grad(grad ϕ\phiϕ), div(div a\boldsymbol{a}a), curl(div a\boldsymbol{a}a) and grad(curl a\boldsymbol{a}a).
In each case the second (outer) vector operator is acting on the wrong type of field, i.e. scalar instead of vector or vice versa. In grad(grad ϕ\phiϕ), for example, grad acts on grad ϕ\phiϕ, which is a vector field, but we know that grad only acts on scalar fields.
222 always zero
- curl grad ϕ\phiϕ = ∇×∇ϕ=0\nabla\times\nabla\phi=0∇×∇ϕ=0,
- div curl a\boldsymbol{a}a = ∇⋅(∇×a)=0\nabla\cdot(\nabla \times \boldsymbol{a})=0∇⋅(∇×a)=0.
333 Meaningful
- div grad ϕ=∇⋅∇ϕ=∇2ϕ=∂2ϕ∂x2+∂2ϕ∂y2+∂2ϕ∂z2\phi=\nabla\cdot\nabla\phi=\nabla^2\phi=\frac{\partial^2\phi}{\partial x^2}+\frac{\partial^2\phi}{\partial y^2}+\frac{\partial^2\phi}{\partial z^2}ϕ=∇⋅∇ϕ=∇2ϕ=∂x2∂2ϕ+∂y2∂2ϕ+∂z2∂2ϕ,
- grad div a\boldsymbol{a}a = ∇(∇⋅a)=(∂2ax∂x2+∂2ay∂x∂y+∂2az∂x∂z)i+(∂2ax∂y∂y+∂2ay∂2y+∂2az∂y∂z)j+(∂2ax∂z∂x+∂2ay∂z∂y+∂2az∂2z)k\nabla(\nabla\cdot\boldsymbol{a})\\=(\frac{\partial^2a_x}{\partial x^2}+\frac{\partial^2a_y}{\partial x \partial y}+\frac{\partial^2a_z}{\partial x \partial z})\boldsymbol{i}+(\frac{\partial^2a_x}{\partial y\partial y}+\frac{\partial^2a_y}{\partial^2 y}+\frac{\partial^2a_z}{\partial y \partial z})\boldsymbol{j}+(\frac{\partial^2a_x}{\partial z\partial x}+\frac{\partial^2a_y}{\partial z\partial y}+\frac{\partial^2a_z}{\partial ^2z})\boldsymbol{k}∇(∇⋅a)=(∂x2∂2ax+∂x∂y∂2ay+∂x∂z∂2az)i+(∂y∂y∂2ax+∂2y∂2ay+∂y∂z∂2az)j+(∂z∂x∂2ax+∂z∂y∂2ay+∂2z∂2az)k,
- curl curl a\boldsymbol{a}a = ∇×(∇×a)=∇(∇⋅a)−∇2a\nabla\times(\nabla\times\boldsymbol{a})=\nabla(\nabla\cdot\boldsymbol{a})-\nabla^2\boldsymbol{a}∇×(∇×a)=∇(∇⋅a)−∇2a