Combinations of grad, div and curl

We now consider the action of two vector operators in succession on a scalar or vector field. We can immediately discard four of the nine obvious combinations of grad, div and curl. where ϕ\phiϕ is a scalar field and a\boldsymbol{a}a is a vector field.

444 meaningless

these four combinations are grad(grad ϕ\phiϕ), div(div a\boldsymbol{a}a), curl(div a\boldsymbol{a}a) and grad(curl a\boldsymbol{a}a).
In each case the second (outer) vector operator is acting on the wrong type of field, i.e. scalar instead of vector or vice versa. In grad(grad ϕ\phiϕ), for example, grad acts on grad ϕ\phiϕ, which is a vector field, but we know that grad only acts on scalar fields.

222 always zero

  1. curl grad ϕ\phiϕ = ∇×∇ϕ=0\nabla\times\nabla\phi=0×ϕ=0,
  2. div curl a\boldsymbol{a}a = ∇⋅(∇×a)=0\nabla\cdot(\nabla \times \boldsymbol{a})=0(×a)=0.

333 Meaningful

  1. div grad ϕ=∇⋅∇ϕ=∇2ϕ=∂2ϕ∂x2+∂2ϕ∂y2+∂2ϕ∂z2\phi=\nabla\cdot\nabla\phi=\nabla^2\phi=\frac{\partial^2\phi}{\partial x^2}+\frac{\partial^2\phi}{\partial y^2}+\frac{\partial^2\phi}{\partial z^2}ϕ=ϕ=2ϕ=x22ϕ+y22ϕ+z22ϕ,
  2. grad div a\boldsymbol{a}a = ∇(∇⋅a)=(∂2ax∂x2+∂2ay∂x∂y+∂2az∂x∂z)i+(∂2ax∂y∂y+∂2ay∂2y+∂2az∂y∂z)j+(∂2ax∂z∂x+∂2ay∂z∂y+∂2az∂2z)k\nabla(\nabla\cdot\boldsymbol{a})\\=(\frac{\partial^2a_x}{\partial x^2}+\frac{\partial^2a_y}{\partial x \partial y}+\frac{\partial^2a_z}{\partial x \partial z})\boldsymbol{i}+(\frac{\partial^2a_x}{\partial y\partial y}+\frac{\partial^2a_y}{\partial^2 y}+\frac{\partial^2a_z}{\partial y \partial z})\boldsymbol{j}+(\frac{\partial^2a_x}{\partial z\partial x}+\frac{\partial^2a_y}{\partial z\partial y}+\frac{\partial^2a_z}{\partial ^2z})\boldsymbol{k}(a)=(x22ax+xy2ay+xz2az)i+(yy2ax+2y2ay+yz2az)j+(zx2ax+zy2ay+2z2az)k,
  3. curl curl a\boldsymbol{a}a = ∇×(∇×a)=∇(∇⋅a)−∇2a\nabla\times(\nabla\times\boldsymbol{a})=\nabla(\nabla\cdot\boldsymbol{a})-\nabla^2\boldsymbol{a}×(×a)=(a)2a
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力的老周

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值