定义
Central to all these differential operations is the vector operator ∇\nabla∇, which is called del (or sometimes nabla) and in Cartesian coordinates is defined by
∇≡i∂∂x+j∂∂y+k∂∂z.\nabla\equiv \boldsymbol{i} \frac{\partial}{\partial x}+\boldsymbol{j}\frac{\partial}{\partial y}+\boldsymbol{k}\frac{\partial}{\partial z}.∇≡i∂x∂+j∂y∂+k∂z∂.
Vector operators acting on sums and products
1、∇(ϕ+ψ)=∇ϕ+∇ψ\nabla(\phi+\psi)=\nabla\phi+\nabla\psi∇(ϕ+ψ)=∇ϕ+∇ψ;
2、∇⋅(a+b)=∇⋅a+∇⋅b\nabla \cdot (\boldsymbol{a}+\boldsymbol{b})=\nabla \cdot \boldsymbol{a}+\nabla \cdot \boldsymbol{b}∇⋅(a+b)=∇⋅a+∇⋅b;
3、∇×(a+b)=∇×a+∇×b\nabla \times (\boldsymbol{a}+\boldsymbol{b})=\nabla \times \boldsymbol{a}+\nabla \times \boldsymbol{b}∇×(a+b)=∇×a+∇×b;
4、∇(ϕψ)=ϕ∇ψ+ψ∇ϕ\nabla(\phi\psi)=\phi\nabla\psi+\psi\nabla\phi∇(ϕψ)=ϕ∇ψ+ψ∇ϕ;
5、∇(a⋅b)=a×(∇×b)+b×(∇×a)+(a⋅∇)b+(b⋅∇)a\nabla (\boldsymbol{a} \cdot \boldsymbol{b})=\boldsymbol{a} \times (\nabla \times \boldsymbol{b})+\boldsymbol{b} \times (\nabla \times \boldsymbol{a})+(\boldsymbol{a} \cdot\nabla)\boldsymbol{b}+(\boldsymbol{b} \cdot\nabla)\boldsymbol{a}∇(a⋅b)=a×(∇×b)+b×(∇×a)+(a⋅∇)b+(b⋅∇)a;
6、∇⋅(ϕa)=ϕ∇⋅a+a⋅∇ϕ\nabla \cdot (\phi\boldsymbol{a})=\phi \nabla \cdot \boldsymbol{a}+\boldsymbol{a} \cdot \nabla \phi∇⋅(ϕa)=ϕ∇⋅a+a⋅∇ϕ;
7、∇⋅(a×b)=b⋅(∇×a)−a⋅(∇×b)\nabla\cdot(\boldsymbol{a} \times \boldsymbol{b})=\boldsymbol{b}\cdot(\nabla \times\boldsymbol{a} ) -\boldsymbol{a}\cdot(\nabla \times\boldsymbol{b})∇⋅(a×b)=b⋅(∇×a)−a⋅(∇×b);
8、∇×(ϕa)=∇ϕ×a+ϕ∇×a\nabla\times(\phi\boldsymbol{a})=\nabla\phi\times\boldsymbol{a}+\phi\nabla\times\boldsymbol{a}∇×(ϕa)=∇ϕ×a+ϕ∇×a;
9、∇×(a×b)=a(∇⋅b)−b(∇⋅a)+(b⋅∇)a−(a⋅∇)b\nabla \times (\boldsymbol{a}\times\boldsymbol{b})=\boldsymbol{a}(\nabla\cdot\boldsymbol{b})-\boldsymbol{b}(\nabla\cdot\boldsymbol{a})+(\boldsymbol{b}\cdot\nabla)\boldsymbol{a}-(\boldsymbol{a}\cdot\nabla)\boldsymbol{b}∇×(a×b)=a(∇⋅b)−b(∇⋅a)+(b⋅∇)a−(a⋅∇)b;
where ϕ\phiϕ and ψ\psiψ are scalar fields, and a\boldsymbol{a}a and b\boldsymbol{b}b are vector fields.