4、航天器电力技术:现状、挑战与未来展望

航天器电力技术:现状、挑战与未来展望

1. 航天器发展历程与电力需求增长

自1957年10月4日,184磅的人造卫星斯普特尼克一号(Sputnik I)发射升空,它携带银锌原电池作为唯一电源,标志着太空时代的到来。但原电池的特性决定了航天器的使用寿命,因为电池耗尽后不久,卫星便会重新进入大气层。随后,先锋一号(Vanguard I)成为第一颗携带太阳能电池与二次电池(即可充电电池)的卫星,二次电池用于在日食期间提供电力。

从那时起,人造卫星的复杂性和对电力的需求呈指数级增长。如今,卫星已成为现代通信、气象、观测、导航、大地测量、国防、娱乐以及科学发现等领域不可或缺的工具。卫星发射的频率也日益增加,不仅数量增多,卫星的尺寸也不断增大。当前一些发射载具的有效载荷能力如下表所示:
| 发射载具 | 近地轨道(LEO)有效载荷(kg) | 地球同步轨道(GEO)有效载荷(kg) | 地球同步转移轨道(GTO)有效载荷(kg) |
| — | — | — | — |
| Delta II - 7925 | 5,000 | 1,800 | - |
| Titan IV | 17,700 | 4,450 | - |
| Ariane 5 | 6,800 | - | - |
| Proton K | 20,100 | 2,100 | 4,615 |
| Shuttle | 24,400 | 5,900 | - |

尽管现代发射系统能够轻松将巨大的有效载荷送入轨道,但发射成本仍然很高,通常每千克送入近地轨道的成本高达数千美元。这使得航天器的设计必须在质量、可靠性和成本之间进行权衡。

2. 航天器与地球电力系统的差异<

【博士论文复现】【阻抗建模、验证扫频法】光伏并网逆变器扫频稳定性分析(包含锁相环电流环)(Simulink仿真实现)内容概要:本文档是一份关于“光伏并网逆变器扫频稳定性分析”的Simulink仿真实现资源,重点复现博士论文中的阻抗建模扫频法验证过程,涵盖锁相环和电流环等关键控制环节。通过构建详细的逆变器模型,采用小信号扰动方法进行频域扫描,获取系统输出阻抗特性,并结合奈奎斯特稳定判据分析并网系统的稳定性,帮助深入理解光伏发电系统在弱电网条件下的动态行为失稳机理。; 适合人群:具备电力电子、自动控制理论基础,熟悉Simulink仿真环境,从事新能源发电、微电网或电力系统稳定性研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握光伏并网逆变器的阻抗建模方法;②学习基于扫频法的系统稳定性分析流程;③复现高水平学术论文中的关键技术环节,支撑科研项目或学位论文工作;④为实际工程中并网逆变器的稳定性问题提供仿真分析手段。; 阅读建议:建议读者结合相关理论教材原始论文,逐步运行并调试提供的Simulink模型,重点关注锁相环电流控制器参数对系统阻抗特性的影响,通过改变电网强度等条件观察系统稳定性变化,深化对阻抗分析法的理解应用能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值