随手笔记——Eigen的简单使用记录

该文介绍了Eigen库的基础使用,包括声明不同尺寸的矩阵和向量,矩阵的访问、运算、转置、求逆、行列式、特征值及解线性方程组的方法。通过对比直接求逆和使用QR分解、Cholesky分解的时间差异,强调了矩阵分解在效率上的优势。

随手笔记——Eigen的简单使用记录

说明

Eigen库的简单使用

关键部分

  1. Eigen 中所有向量和矩阵都是Eigen::Matrix,它是一个模板类。它的前三个参数为:数据类型,行,列

  2. // 声明一个2*3的float矩阵
    Matrix<float, 2, 3> matrix_23;

  3. // 同时,Eigen 通过 typedef 提供了许多内置类型,不过底层仍是Eigen::Matrix
    // 例如 Vector3d 实质上是 Eigen::Matrix<double, 3, 1>,即三维向量
    Vector3d v_3d;
    // 这是一样的
    Matrix<double, 3, 1> vd_3d;

  4. // Matrix3d 实质上是 Eigen::Matrix<double, 3, 3>
    Matrix3d matrix_33 = Matrix3d::Zero(); //初始化为零

  5. // 如果不确定矩阵大小,可以使用动态大小的矩阵
    Matrix<double, Dynamic, Dynamic> matrix_dynamic;
    // 更简单的
    MatrixXd matrix_x;

  6. // 用()访问矩阵中的元素
    for (int i = 0; i < 2; i++) {
    for (int j = 0; j < 3; j++) cout << matrix_23(i, j) << “\t”;
    cout << endl;
    }

  7. // 四则运算就不演示了,直接用±*/即可。
    matrix_33 = Matrix3d::Random(); // 随机数矩阵
    cout << “random matrix: \n” << matrix_33 << endl;
    cout << “transpose: \n” << matrix_33.transpose() << endl; // 转置
    cout << "sum: " << matrix_33.sum() << endl; // 各元素和
    cout << "trace: " << matrix_33.trace() << endl; // 迹
    cout << “times 10: \n” << 10 * matrix_33 << endl; // 数乘
    cout << “inverse: \n” << matrix_33.inverse() << endl; // 逆
    cout << "det: " << matrix_33.determinant() << endl; // 行列式

  8. // 解方程
    // 我们求解 matrix_NN * x = v_Nd 这个方程
    // N的大小在前边的宏里定义,它由随机数生成
    // 直接求逆自然是最直接的,但是求逆运算量大

    Matrix<double, MATRIX_SIZE, MATRIX_SIZE> matrix_NN
    = MatrixXd::Random(MATRIX_SIZE, MATRIX_SIZE);
    matrix_NN = matrix_NN * matrix_NN.transpose(); // 保证半正定
    Matrix<double, MATRIX_SIZE, 1> v_Nd = MatrixXd::Random(MATRIX_SIZE, 1);

    clock_t time_stt = clock(); // 计时
    // 直接求逆
    Matrix<double, MATRIX_SIZE, 1> x = matrix_NN.inverse() * v_Nd;
    cout << "time of normal inverse is "
    << 1000 * (clock() - time_stt) / (double) CLOCKS_PER_SEC << “ms” << endl;
    cout << "x = " << x.transpose() << endl;

    // 通常用矩阵分解来求,例如QR分解,速度会快很多
    time_stt = clock();
    x = matrix_NN.colPivHouseholderQr().solve(v_Nd);
    cout << "time of Qr decomposition is "
    << 1000 * (clock() - time_stt) / (double) CLOCKS_PER_SEC << “ms” << endl;
    cout << "x = " << x.transpose() << endl;

    // 对于正定矩阵,还可以用cholesky分解来解方程
    time_stt = clock();
    x = matrix_NN.ldlt().solve(v_Nd);
    cout << "time of ldlt decomposition is "
    << 1000 * (clock() - time_stt) / (double) CLOCKS_PER_SEC << “ms” << endl;
    cout << "x = " << x.transpose() << endl;

完整代码

#include <iostream>
#include <ctime>

// Eigen 核心部分
#include <Eigen/Core>
// 稠密矩阵的代数运算(逆,特征值等)
#include <Eigen/Dense>

using namespace Eigen;
using namespace std;

#define MATRIX_SIZE 50

/****************************
* 本程序演示了 Eigen 基本类型的使用
****************************/
int main(int argc, char **argv) {
  // Eigen 中所有向量和矩阵都是Eigen::Matrix,它是一个模板类。它的前三个参数为:数据类型,行,列
  // 声明一个2*3的float矩阵
  Matrix<float, 2, 3> matrix_23;

  // 同时,Eigen 通过 typedef 提供了许多内置类型,不过底层仍是Eigen::Matrix
  // 例如 Vector3d 实质上是 Eigen::Matrix<double, 3, 1>,即三维向量
  Vector3d v_3d;
  // 这是一样的
  Matrix<double, 3, 1> vd_3d;

  // Matrix3d 实质上是 Eigen::Matrix<double, 3, 3>
  Matrix3d matrix_33 = Matrix3d::Zero(); //初始化为零
  // 如果不确定矩阵大小,可以使用动态大小的矩阵
  Matrix<double, Dynamic, Dynamic> matrix_dynamic;
  // 更简单的
  MatrixXd matrix_x;
  // 这种类型还有很多,我们不一一列举

  // 下面是对Eigen阵的操作
  // 输入数据(初始化)
  matrix_23 << 1, 2, 3, 4, 5, 6;
  // 输出
  cout << "matrix 2x3 from 1 to 6: \n" << matrix_23 << endl;

  // 用()访问矩阵中的元素
  cout << "print matrix 2x3: " << endl;
  for (int i = 0; i < 2; i++) {
    for (int j = 0; j < 3; j++) cout << matrix_23(i, j) << "\t";
    cout << endl;
  }

  // 矩阵和向量相乘(实际上仍是矩阵和矩阵)
  v_3d << 3, 2, 1;
  vd_3d << 4, 5, 6;

  // 但是在Eigen里你不能混合两种不同类型的矩阵,像这样是错的
  // Matrix<double, 2, 1> result_wrong_type = matrix_23 * v_3d;
  // 应该显式转换
  Matrix<double, 2, 1> result = matrix_23.cast<double>() * v_3d;
  cout << "[1,2,3;4,5,6]*[3,2,1]=" << result.transpose() << endl;

  Matrix<float, 2, 1> result2 = matrix_23 * vd_3d;
  cout << "[1,2,3;4,5,6]*[4,5,6]: " << result2.transpose() << endl;

  // 同样你不能搞错矩阵的维度
  // 试着取消下面的注释,看看Eigen会报什么错
  // Eigen::Matrix<double, 2, 3> result_wrong_dimension = matrix_23.cast<double>() * v_3d;

  // 一些矩阵运算
  // 四则运算就不演示了,直接用+-*/即可。
  matrix_33 = Matrix3d::Random();      // 随机数矩阵
  cout << "random matrix: \n" << matrix_33 << endl;
  cout << "transpose: \n" << matrix_33.transpose() << endl;      // 转置
  cout << "sum: " << matrix_33.sum() << endl;            // 各元素和
  cout << "trace: " << matrix_33.trace() << endl;          // 迹
  cout << "times 10: \n" << 10 * matrix_33 << endl;               // 数乘
  cout << "inverse: \n" << matrix_33.inverse() << endl;        // 逆
  cout << "det: " << matrix_33.determinant() << endl;    // 行列式

  // 特征值
  // 实对称矩阵可以保证对角化成功
  SelfAdjointEigenSolver<Matrix3d> eigen_solver(matrix_33.transpose() * matrix_33);
  cout << "Eigen values = \n" << eigen_solver.eigenvalues() << endl;
  cout << "Eigen vectors = \n" << eigen_solver.eigenvectors() << endl;

  // 解方程
  // 我们求解 matrix_NN * x = v_Nd 这个方程
  // N的大小在前边的宏里定义,它由随机数生成
  // 直接求逆自然是最直接的,但是求逆运算量大

  Matrix<double, MATRIX_SIZE, MATRIX_SIZE> matrix_NN
      = MatrixXd::Random(MATRIX_SIZE, MATRIX_SIZE);
  matrix_NN = matrix_NN * matrix_NN.transpose();  // 保证半正定
  Matrix<double, MATRIX_SIZE, 1> v_Nd = MatrixXd::Random(MATRIX_SIZE, 1);

  clock_t time_stt = clock(); // 计时
  // 直接求逆
  Matrix<double, MATRIX_SIZE, 1> x = matrix_NN.inverse() * v_Nd;
  cout << "time of normal inverse is "
       << 1000 * (clock() - time_stt) / (double) CLOCKS_PER_SEC << "ms" << endl;
  cout << "x = " << x.transpose() << endl;

  // 通常用矩阵分解来求,例如QR分解,速度会快很多
  time_stt = clock();
  x = matrix_NN.colPivHouseholderQr().solve(v_Nd);
  cout << "time of Qr decomposition is "
       << 1000 * (clock() - time_stt) / (double) CLOCKS_PER_SEC << "ms" << endl;
  cout << "x = " << x.transpose() << endl;

  // 对于正定矩阵,还可以用cholesky分解来解方程
  time_stt = clock();
  x = matrix_NN.ldlt().solve(v_Nd);
  cout << "time of ldlt decomposition is "
       << 1000 * (clock() - time_stt) / (double) CLOCKS_PER_SEC << "ms" << endl;
  cout << "x = " << x.transpose() << endl;

  return 0;
}

注:程序源码来自slam14讲,仅供学习使用!

03-08
### MathPix工具介绍 Mathpix Snipping Tool 是一款强大的数学公式识别工具,从最初的原型发展至今已经历了多次迭代和功能增强[^1]。该工具不仅能处理简单的数学表达式,还可以应对复杂的数学模型以及多行公式,并且支持手写公式的识别。 这款应用程序通过不断的科技创新与用户反馈改进,在学术研究和技术领域赢得了良好声誉,成为许多科研人员不可或缺的工作伙伴之一。除了基本的功能外,Mathpix 还提供了多种高级特性来满足不同用户的特定需求。 ### 使用方法 #### 安装与启动 为了使用 Mathpix Snipping Tool ,首先需要下载安装程序并按照提示完成设置过程。一旦成功安装后即可随时调用此应用来进行截图操作。 #### 截取屏幕上的公式图像 当遇到想要转换成 LaTeX 或 AsciiMath 的图片时,只需打开软件界面按下快捷键(默认为 `Ctrl+Alt+M`),此时鼠标指针会变为十字形状以便于选取目标区域;框选所需部分之后松开按键即刻上传至云端服务器等待进一步分析处理。 #### 获取LaTeX代码片段 经过短暂几秒钟的时间延迟过后,所截获的内容将以纯文本形式显示出来供复制粘贴到其他编辑器当中继续编写文档或是分享给他人查看交流之用。 ```python import pyperclip # 假设已获取到LaTeX字符串 stored_in_variable named latex_code pyperclip.copy(latex_code) print("LaTeX code has been copied to clipboard.") ``` 对于希望深入探索更多可能性的用户来说,可以考虑查阅官方提供的扩展插件——如用于解析Markdown文件内的公式标记语法的库 **mathpix-markdown-it** [^2] ——这将进一步提升工作效率和个人体验感。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值