pointnet tf_util.fully_connected

本文深入解析了PointNet分类工程中fully_connected层的具体实现,包括如何利用权重矩阵和偏置项进行前向传播,以及BatchNorm在训练过程中的作用。通过实例展示了1024到512维度的转换过程,强调了ReLU激活函数的应用。
net = tf_util.fully_connected(net, 512, bn=True, is_training=is_training,
                                  scope='tfc1', bn_decay=bn_decay)
    net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training,
                                  scope='tfc2', bn_decay=bn_decay)

看下具体实现,bn代表batch norm,batch方向的归一化处理

def fully_connected(inputs,
                    num_outputs,
                    scope,
                    use_xavier=True,
                    stddev=1e-3,
                    weight_decay=0.0,
                    activation_fn=tf.nn.relu,
                    bn=False,
                    bn_decay=None,
                    is_training=None):
  """ Fully connected layer with non-linear operation.
  
  Args:
    inputs: 2-D tensor BxN
    num_outputs: int
  
  Returns:
    Variable tensor of size B x num_outputs.
  """
  with tf.variable_scope(scope) as sc:
    num_input_units = inputs.get_shape()[-1].value
    weights = _variable_with_weight_decay('weights',
                                          shape=[num_input_units, num_outputs],
                                          use_xavier=use_xavier,
                                          stddev=stddev,
                                          wd=weight_decay)
    outputs = tf.matmul(inputs, weights)
    biases = _variable_on_cpu('biases', [num_outputs],
                             tf.constant_initializer(0.0))
    outputs = tf.nn.bias_add(outputs, biases)
     
    if bn:
      outputs = batch_norm_for_fc(outputs, is_training, bn_decay, 'bn')

    if activation_fn is not None:
      outputs = activation_fn(outputs)
    return outputs

num_input_units=1024,输出为512在pointnet分类工程中,则声明一个1024,512的weight的tensor一个biases,512,进行归一化

最后设置激活函数,依然是relu

所以,fullyconnet实际是一个正向x*w+b的一个操作,只是通过控制w来控制输出。没有卷积的动作

def input_transform_net(point_cloud, is_training, bn_decay=None, K=3): """ Input (XYZ) Transform Net, input is BxNx3 gray image Return: Transformation matrix of size 3xK """ batch_size = point_cloud.get_shape()[0].value num_point = point_cloud.get_shape()[1].value input_image = tf.expand_dims(point_cloud, -1) net = tf_util.conv2d(input_image, 64, [1,3], padding='VALID', stride=[1,1], bn=True, is_training=is_training, scope='tconv1', bn_decay=bn_decay) net = tf_util.conv2d(net, 128, [1,1], padding='VALID', stride=[1,1], bn=True, is_training=is_training, scope='tconv2', bn_decay=bn_decay) net = tf_util.conv2d(net, 1024, [1,1], padding='VALID', stride=[1,1], bn=True, is_training=is_training, scope='tconv3', bn_decay=bn_decay) net = tf_util.max_pool2d(net, [num_point,1], padding='VALID', scope='tmaxpool') net = tf.reshape(net, [batch_size, -1]) net = tf_util.fully_connected(net, 512, bn=True, is_training=is_training, scope='tfc1', bn_decay=bn_decay) net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training, scope='tfc2', bn_decay=bn_decay) with tf.variable_scope('transform_XYZ') as sc: assert(K==3) weights = tf.get_variable('weights', [256, 3*K], initializer=tf.constant_initializer(0.0), dtype=tf.float32) biases = tf.get_variable('biases', [3*K], initializer=tf.constant_initializer(0.0), dtype=tf.float32) biases += tf.constant([1,0,0,0,1,0,0,0,1], dtype=tf.float32) transform = tf.matmul(net, weights) transform = tf.nn.bias_add(transform, biases) transform = tf.reshape(transform, [batch_size, 3, K]) return transform
最新发布
09-20
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值