pointnet tf_util.max_pool2d

本文详细解析了TensorFlow中max_pool2d函数的封装实现,该函数用于二维最大池化,输入为四维张量,通过指定的内核大小和步长进行池化,最终返回池化后的变量张量。
部署运行你感兴趣的模型镜像
net = tf_util.max_pool2d(net, [num_point,1],
                             padding='VALID', scope='tmaxpool')

看下具体实现

def max_pool2d(inputs,
               kernel_size,
               scope,
               stride=[2, 2],
               padding='VALID'):
  """ 2D max pooling.

  Args:
    inputs: 4-D tensor BxHxWxC
    kernel_size: a list of 2 ints
    stride: a list of 2 ints
  
  Returns:
    Variable tensor
  """
  with tf.variable_scope(scope) as sc:
    kernel_h, kernel_w = kernel_size
    stride_h, stride_w = stride
    outputs = tf.nn.max_pool(inputs,
                             ksize=[1, kernel_h, kernel_w, 1],
                             strides=[1, stride_h, stride_w, 1],
                             padding=padding,
                             name=sc.name)
    return outputs

其实是对tf.nn.max_pool进行了封装,输入的input是第三层输出的net(shape[32,1024,1,1024]),stride设置为2,2即沿h和w方向步幅为2步,直接对1024,1进行池化,且步幅是2,直接将1024个点进行池化得到最大点的池化值,最后得到[32,1,1,1024],目前不知道为什么这么操作

 

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

def input_transform_net(point_cloud, is_training, bn_decay=None, K=3): """ Input (XYZ) Transform Net, input is BxNx3 gray image Return: Transformation matrix of size 3xK """ batch_size = point_cloud.get_shape()[0].value num_point = point_cloud.get_shape()[1].value input_image = tf.expand_dims(point_cloud, -1) net = tf_util.conv2d(input_image, 64, [1,3], padding='VALID', stride=[1,1], bn=True, is_training=is_training, scope='tconv1', bn_decay=bn_decay) net = tf_util.conv2d(net, 128, [1,1], padding='VALID', stride=[1,1], bn=True, is_training=is_training, scope='tconv2', bn_decay=bn_decay) net = tf_util.conv2d(net, 1024, [1,1], padding='VALID', stride=[1,1], bn=True, is_training=is_training, scope='tconv3', bn_decay=bn_decay) net = tf_util.max_pool2d(net, [num_point,1], padding='VALID', scope='tmaxpool') net = tf.reshape(net, [batch_size, -1]) net = tf_util.fully_connected(net, 512, bn=True, is_training=is_training, scope='tfc1', bn_decay=bn_decay) net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training, scope='tfc2', bn_decay=bn_decay) with tf.variable_scope('transform_XYZ') as sc: assert(K==3) weights = tf.get_variable('weights', [256, 3*K], initializer=tf.constant_initializer(0.0), dtype=tf.float32) biases = tf.get_variable('biases', [3*K], initializer=tf.constant_initializer(0.0), dtype=tf.float32) biases += tf.constant([1,0,0,0,1,0,0,0,1], dtype=tf.float32) transform = tf.matmul(net, weights) transform = tf.nn.bias_add(transform, biases) transform = tf.reshape(transform, [batch_size, 3, K]) return transform
最新发布
09-20
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值