克拉默规则
一个含有n个未知量n个方程的线性方程组,当它的系数的行列式值
D
≠
0
D\neq 0
D=0时,有且仅有唯一解,
x
j
=
D
j
D
x_j = \frac{D_j}D
xj=DDj
其中
D
j
D_j
Dj是把D的第j列换成常数项。
证明
方程组为
∑
j
=
1
n
a
i
j
x
j
=
b
i
,
(
i
=
1
,
2
,
.
.
,
n
)
\sum_{j=1}^na_{ij}x_j = b_i, \ (i=1,2,..,n)
j=1∑naijxj=bi, (i=1,2,..,n)
取D按第k列分解的余子式
A
i
k
(
i
=
1
,
2
,
.
.
,
n
)
A_{ik}(i=1,2,..,n)
Aik(i=1,2,..,n),将它们分别与第1,2…,n个方程相乘,然后累加。得到
∑
i
=
0
n
b
i
A
i
k
=
∑
i
=
1
n
(
∑
j
=
1
n
a
i
j
A
i
k
x
j
)
=
∑
j
=
1
n
(
∑
i
=
1
n
a
i
j
A
i
k
)
x
j
=
∑
i
=
1
n
a
i
k
A
i
k
x
k
+
∑
1
≤
j
≤
n
,
j
≠
k
(
∑
i
=
1
n
a
i
j
A
i
k
)
x
j
\sum_{i=0}^nb_iA_{ik} = \sum_{i=1}^n\left(\sum_{j=1}^na_{ij}A_{ik}x_j \right) = \sum_{j=1}^n\left(\sum_{i=1}^na_{ij}A_{ik}\right)x_j= \sum_{i=1}^na_{ik}A_{ik}x_k+ \sum_{1\leq j\leq n,j\neq k}\left(\sum_{i=1}^na_{ij}A_{ik}\right)x_j
i=0∑nbiAik=i=1∑n(j=1∑naijAikxj)=j=1∑n(i=1∑naijAik)xj=i=1∑naikAikxk+1≤j≤n,j=k∑(i=1∑naijAik)xj
而
∑
i
=
1
n
a
i
j
A
i
k
=
{
D
,
i
=
k
0
,
x
≠
1
\sum_{i=1}^na_{ij}A_{ik} = \begin{cases} D, &i = k\\ 0, &x \neq 1 \end{cases}
i=1∑naijAik={D,0,i=kx=1
所以
D
k
=
∑
i
=
0
n
b
i
A
i
j
=
D
x
k
D_k = \sum_{i=0}^nb_iA_{ij} = Dx_k
Dk=i=0∑nbiAij=Dxk
而D不等于0 ,所以
x
k
=
D
k
D
x_k = \frac {D_k}D
xk=DDk, 因为k是任取的, 可以推广到
x
j
=
D
j
D
,
(
j
=
1
,
.
.
,
n
)
x_j = \frac{D_j}D, (j= 1,..,n)
xj=DDj,(j=1,..,n)
原方程组至多有这个解,下面检验这个是不是它的解。
考察第k(k=1,…,n)个方程的左边,
∑
j
=
1
n
a
k
j
x
j
=
∑
j
=
1
n
a
k
j
D
j
D
\sum_{j=1}^na_{kj}x_j = \sum_{j=1}^n \frac{a_{kj}D_j}D
j=1∑nakjxj=j=1∑nDakjDj
将
D
j
D_j
Dj按第j列分解,
D
j
=
∑
i
=
0
n
b
i
A
i
j
D_j = \sum_{i=0}^nb_iA_{ij}
Dj=i=0∑nbiAij
代入得到
∑
j
=
1
n
a
k
j
x
j
=
1
D
∑
j
=
1
n
(
∑
i
=
0
n
b
i
A
i
j
)
a
k
j
=
1
D
∑
i
=
0
n
b
i
(
∑
j
=
1
n
a
k
j
A
i
j
)
=
1
D
b
k
∑
j
=
1
n
a
k
j
A
k
j
+
1
D
∑
1
≤
i
≤
n
,
i
≠
k
b
i
(
∑
j
=
1
n
a
k
j
A
i
j
)
\sum_{j=1}^na_{kj}x_j = \frac1D\sum_{j=1}^n \left( \sum_{i=0}^nb_iA_{ij} \right)a_{kj} =\frac1D\sum_{i=0}^n b_i\left(\sum_{j=1}^n a_{kj}A_{ij} \right) = \frac1Db_k\sum_{j=1}^n a_{kj}A_{kj} + \frac1D\sum_{1\leq i\leq n,i\neq k}b_i\left(\sum_{j=1}^n a_{kj}A_{ij} \right)
j=1∑nakjxj=D1j=1∑n(i=0∑nbiAij)akj=D1i=0∑nbi(j=1∑nakjAij)=D1bkj=1∑nakjAkj+D11≤i≤n,i=k∑bi(j=1∑nakjAij)
而
∑
i
=
1
n
a
i
j
A
i
k
=
{
D
,
i
=
k
0
,
x
≠
1
\sum_{i=1}^na_{ij}A_{ik} = \begin{cases} D, &i = k\\ 0, &x \neq 1 \end{cases}
i=1∑naijAik={D,0,i=kx=1
所以
∑
j
=
1
n
a
k
j
x
j
=
1
D
b
k
D
=
b
k
\sum_{j=1}^na_{kj}x_j = \frac1Db_kD = b_k
j=1∑nakjxj=D1bkD=bk
所以第k个方程成立,
x
j
=
D
j
D
x_j = \frac{D_j}D
xj=DDj是原方程组的解。