克莱姆法则
若n元线性方程组
{
a
11
x
1
+
a
12
x
2
+
.
.
.
a
1
n
x
n
=
b
1
a
21
x
1
+
a
22
x
2
+
.
.
.
a
2
n
x
n
=
b
2
.
.
.
a
n
1
x
1
+
a
n
2
x
2
+
.
.
.
a
n
n
x
n
=
b
n
\begin{cases} a_{11}x_1+a_{12}x_2+...a_{1n}x_n=b_1\\ a_{21}x_1+a_{22}x_2+...a_{2n}x_n=b_2\\ ...\\ a_{n1}x_1+a_{n2}x_2+...a_{nn}x_n=b_n\\ \end{cases}
⎩⎪⎪⎪⎨⎪⎪⎪⎧a11x1+a12x2+...a1nxn=b1a21x1+a22x2+...a2nxn=b2...an1x1+an2x2+...annxn=bn
的系数行列式不等于0,即:
D
=
∣
a
11
a
12
.
.
.
a
1
n
a
21
a
22
.
.
.
a
2
n
.
.
.
.
.
.
.
.
.
.
.
.
a
n
1
a
n
2
.
.
.
a
n
n
∣
≠
0
D= \begin{vmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n}\\ ... & ... & ... & ...\\ a_{n1} & a_{n2} & ... & a_{nn}\\ \end{vmatrix} \neq 0
D=∣∣∣∣∣∣∣∣a11a21...an1a12a22...an2............a1na2n...ann∣∣∣∣∣∣∣∤=0
则方程组有唯一解,且
x
1
=
D
1
D
,
x
2
=
D
2
D
,
.
.
.
,
x
n
=
D
n
D
x_1 = \frac{D_1}{D},x_2 = \frac{D_2}{D},...,x_n = \frac{D_n}{D}
x1=DD1,x2=DD2,...,xn=DDn
其中
D
j
(
j
=
1
,
2
,
3
,
.
.
,
n
)
D_j(j = 1,2,3,..,n)
Dj(j=1,2,3,..,n)是将系数行列式中第
j
j
j列用常数项
b
1
,
b
2
,
.
.
.
,
b
n
b_1,b_2,...,b_n
b1,b2,...,bn代替后得到的
n
n
n阶行列式。
D
=
∣
a
11
.
.
.
a
1
,
j
−
1
b
1
a
1
,
j
+
1
.
.
.
a
1
n
a
21
.
.
.
a
2
,
j
−
1
b
2
a
2
,
j
+
1
.
.
.
a
2
n
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
a
n
1
.
.
.
a
n
,
j
−
1
b
n
a
n
,
j
+
1
.
.
.
a
n
n
∣
D= \begin{vmatrix} a_{11} & ... & a_{1,j-1} & b_1 & a_{1,j+1} & ... & a_{1n} \\ a_{21} & ... & a_{2,j-1} & b_2 & a_{2,j+1} & ... & a_{2n} \\ ... & ... & ... & ... & ... & ... & ...\\ a_{n1} & ... & a_{n,j-1} & b_n & a_{n,j+1} & ... & a_{nn} \\ \end{vmatrix}
D=∣∣∣∣∣∣∣∣a11a21...an1............a1,j−1a2,j−1...an,j−1b1b2...bna1,j+1a2,j+1...an,j+1............a1na2n...ann∣∣∣∣∣∣∣∣
当方程组右边的常数
b
j
b_j
bj不全为零时,方程组称为非齐次线性方程组;当
b
1
b_1
b1 =
b
2
b_2
b2 = …
b
n
b_n
bn = 0时,方程组称为齐次线性方程组。