Hessian矩阵 && 通过符号计算解析 Hessian 矩阵

在工业机器人中,构建Hessian矩阵通常用于优化、运动规划或控制任务。Hessian矩阵是目标函数的二阶偏导数矩阵,常用于牛顿法等优化算法中。以下是构建Hessian矩阵的步骤:

1. 定义目标函数

首先,明确需要优化的目标函数 ( f ( x f(\mathbf{x} f(x) ),其中 ( x \mathbf{x} x ) 是机器人状态或控制变量。

2. 计算梯度

计算目标函数的一阶偏导数(梯度):
∇ f ( x ) = [ ∂ f ∂ x 1 , ∂ f ∂ x 2 , … , ∂ f ∂ x n ] T \nabla f(\mathbf{x}) = \left[ \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n} \right]^T f(x)=[x1f,x2f,,xnf]T

3. 计算二阶偏导数

计算目标函数的二阶偏导数,形成Hessian矩阵:
H ( f ) = [ ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 ∂ x 2 ⋯ ∂ 2 f ∂ x 1 ∂ x n ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 2 ⋯ ∂ 2 f ∂ x 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ 2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值