[done, 417.125 ms : 307200 points]
Available dimensions: x y z rgba
源点云milk_cartoon_all_small_clorox.pcd
> Loading point cloud...
> Extracting supervoxels!
Found 423 supervoxels
> Getting supervoxel adjacency
这段代码主要是使用PCL(Point Cloud Library)库来执行超体聚类(supervoxel clustering),并将结果显示在3D可视化工具中。现在我分步解释代码中的具体逻辑:
包含必要的头文件,这些文件用于点云处理和可视化。
定义使用的点云类型,例如pcl::PointXYZRGBA和pcl::PointNormal。
声明一个函数addSupervoxelConnectionsToViewer用于在视图中添加超体聚类的连接。
在main函数中,代码执行如下步骤:
a. 检查命令行参数,确保提供了点云数据文件。
b. 读取点云数据文件,将点云数据载入到PointCloudT类型的智能指针中。
c. 解析命令行参数,根据用户输入设置超体聚类的参数,如体素分辨率、种子分辨率、颜色重要性等。
d. 使用pcl::SupervoxelClustering类型创建超体聚类对象,并配置聚类参数。
e. 调用extract方法进行聚类操作,并将聚类结果存储到一个map容器中。
f. 创建一个PCLVisualizer对象用于3D数据的可视化。
g. 将超体聚类的结果添加到可视化对象中,包括体素中心点云和标记的体素云。
h. 计算超体的邻接性,并通过vtkPolyLine来创建和添加显示超体之间连接关系的可视化元素。
i. 启动可视化循环,直到用户关闭3D视图。
最后addSupervoxelConnectionsToViewer函数负责给每一对超体中心和其邻接超体中心之间添加连线,进而在3D视图中形成超体聚类的可视化图。
总结来说,这段代码是一个完整的PCL应用程序,用于执行超体聚类并可视化点云数据及其聚类结果。它可以让用户通过命令行参数来指定不同的聚类参数,并且能够显示每个聚类体素的中心,以及聚类体素之间的连接情况。
#include <pcl/console/parse.h> // 导入PCL库的console模块,用于解析命令行参数
#include <pcl/point_cloud.h> // 导入PCL库的点云处理模块
#include <pcl/point_types.h> // 导入PCL库的点类型定义
#include <pcl/io/pcd_io.h> // 导入PCL库的PCD文件输入输出模块
#include <pcl/visualization/pcl_visualizer.h> // 导入PCL库的可视化模块
#include <pcl/segmentation/supervoxel_clustering.h> // 导入PCL库的SuperVoxel聚类模块
//VTK include needed for drawing graph lines
#incl