
#if defined(__linux__) || defined(LINUX) || defined(__APPLE__) || defined(ANDROID) || (defined(_MSC_VER) && _MSC_VER>=1800)
#include <opencv2/imgproc.hpp> // Gaussian Blur
#include <opencv2/core.hpp> // Basic OpenCV structures (cv::Mat, Scalar)
#include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp> // OpenCV window I/O
#include <opencv2/features2d.hpp>
#include <opencv2/objdetect.hpp>
#include <stdio.h>
#include<windows.h>
using namespace std;
using namespace cv;
const string WindowName = "Face Detection example";
class CascadeDetectorAdapter : public DetectionBasedTracker::IDetector
{
public:
CascadeDetectorAdapter(cv::Ptr<cv::CascadeClassifier> detector) :
IDetector(),
Detector(detector)
{
CV_Assert(detector);
}
void detect(const cv::Mat& Image, std::vector<cv::Rect>& objects) CV_OVERRIDE
{
Detector->detectMultiScale(Image, objects, scaleFactor, minNeighbours, 0, minObjSize, maxObjSize);//检测人脸
}
virtual ~CascadeDetectorAdapter() CV_OVERRIDE
{}
private:
CascadeDetectorAdapter();
cv::Ptr<cv::CascadeClassifier> Detector;
};
int main(int, char**)
{
namedWindow(WindowName);
//VideoCapture VideoStream(0);//打开摄像头
VideoCapture VideoStream(samples::findFile("facepeople.wmv"));//打开摄像头
if (!VideoStream.isOpened())
{
printf("Error: Cannot open video stream from camera\n");
return 1;
}
//std::string cascadeFrontalfilename = samples::findFile("data/lbpcascades/lbpcascade_frontalface_improved.xml");
std::string cascadeFrontalfilename = "D:/Software/vs2019+pcl+opencv/cudaopencv/opencv4.5.0/data/lbpcascades/lbpcascade_frontalface_improved.xml";//只能检测正脸lbpcascades/lbpcascade_frontalface_improved.xml
cv::Ptr<cv::CascadeClassifier> cascade = makePtr<cv::CascadeClassifier>(cascadeFrontalfilename);//构建级联分类器
cv::Ptr<DetectionBasedTracker::IDetector> MainDetector = makePtr<CascadeDetectorAdapter>(cascade);//主检测器
if (cascade->empty())
{
printf("Error: Cannot load %s\n", cascadeFrontalfilename.c_str());
return 2;
}
cascade = makePtr<cv::CascadeClassifier>(cascadeFrontalfilename);
cv::Ptr<DetectionBasedTracker::IDetector> TrackingDetector = makePtr<CascadeDetectorAdapter>(cascade);//级联检测器
if (cascade->empty())
{
printf("Error: Cannot load %s\n", cascadeFrontalfilename.c_str());
return 2;
}
DetectionBasedTracker::Parameters params;
DetectionBasedTracker Detector(MainDetector, TrackingDetector, params);//检测器
if (!Detector.run())//检测器初始化失败
{
printf("Error: Detector initialization failed\n");
return 2;
}
Mat ReferenceFrame;//参考帧
Mat GrayFrame;//灰度图
vector<Rect> Faces;//人脸矩形 向量
for (;;)
{
VideoStream >> ReferenceFrame;//读取一帧
if (!ReferenceFrame.empty())
{
cvtColor(ReferenceFrame, GrayFrame, COLOR_BGR2GRAY);//转灰度图
Detector.process(GrayFrame);//检测人脸
Detector.getObjects(Faces);//获取人脸
for (size_t i = 0; i < Faces.size(); i++)
{
rectangle(ReferenceFrame, Faces[i], Scalar(0, 255, 0));//绘制人脸矩形
}
imshow(WindowName, ReferenceFrame);
Sleep(200);
}
if (waitKey(30) > 0)
{
break;
}
}// while (waitKey(30) < 0);
Detector.stop();//停止检测
return 0;
}
#else
#include <stdio.h>
int main()
{
printf("This sample works for UNIX or ANDROID or Visual Studio 2013+ only\n");
return 0;
}
#endif

参考:
基于Opencv的人脸定位 - 掘金 (juejin.cn)
https://juejin.cn/post/6844903704907218951

本文介绍了一个基于OpenCV库实现的人脸检测系统。该系统通过级联分类器进行人脸定位,并利用DetectionBasedTracker跟踪人脸。文章提供了完整的源代码,展示了如何从视频流中实时检测并绘制人脸矩形。
494

被折叠的 条评论
为什么被折叠?



