Codeforces 632D Longest Subsequence 【求因子和变形】

本文探讨了一个特定的算法问题,即寻找数组中最长子序列,该子序列的元素最小公倍数不超过给定值m。通过分析题目要求及限制条件,提出了一种基于因子分解和枚举的方法来解决此问题,并给出了详细的实现步骤和AC代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

D. Longest Subsequence
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given array a with n elements and the number m. Consider some subsequence of a and the value of least common multiple (LCM) of its elements. Denote LCM as l. Find any longest subsequence of a with the value l ≤ m.

A subsequence of a is an array we can get by erasing some elements of a. It is allowed to erase zero or all elements.

The LCM of an empty array equals 1.

Input

The first line contains two integers n and m (1 ≤ n, m ≤ 106) — the size of the array a and the parameter from the problem statement.

The second line contains n integers ai (1 ≤ ai ≤ 109) — the elements of a.

Output

In the first line print two integers l and kmax (1 ≤ l ≤ m, 0 ≤ kmax ≤ n) — the value of LCM and the number of elements in optimal subsequence.

In the second line print kmax integers — the positions of the elements from the optimal subsequence in the ascending order.

Note that you can find and print any subsequence with the maximum length.

Examples
input
7 8
6 2 9 2 7 2 3
output
6 5
1 2 4 6 7
input
6 4
2 2 2 3 3 3
output
2 3
1 2 3


fuck,偷懒用cin>>,T了。。。


题意:给定一个n元素构成的序列和一个数m,让你找到一个最长的子序列c[]使得lcm(c[]) <= m。输出序列的lcm 和 长度以及 组成这个序列的元素下标。


思路:发现m最大为10^6,可以直接暴力搞出i(1 <= i <= m)在序列中的因子数sum[i],就是求因子和的变形。

然后我们找到最大的sum[i],这个就是满足题意的子序列的最大长度。此时对应的i并不一定是子序列的lcm,我们就从末尾扫一次,对符合条件的元素求一次lcm即可。


AC代码:


#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <map>
#include <string>
#include <vector>
#include <queue>
#include <stack>
#define CLR(a, b) memset(a, (b), sizeof(a))
#define ll o<<1
#define rr o<<1|1
using namespace std;
typedef long long LL;
const int MOD = 1e9+7;
const int MAXN = 1e6+10;
const int INF = 0x3f3f3f3f;
void add(LL &x, LL y) {x += y; x %= MOD;}
map<LL, int> fp;
LL gcd(LL a, LL b) {
    return b == 0 ? a : gcd(b, a%b);
}
LL lcm(LL a, LL b) {
    return a / gcd(a, b) * b;
}
LL a[MAXN]; int sum[MAXN];
int main()
{
    int n, m; cin >> n >> m; fp.clear();
    for(int i = 1; i <= n; i++) scanf("%lld", &a[i]), fp[a[i]]++;
    for(int i = 1; i <= m; i++)
    {
        if(i == 1)
            sum[i] = fp[1];
        else
            sum[i] = fp[i] + fp[1];
    }
    for(int i = 2; i*i <= m; i++)
    {
        for(int j = i; i*j <= m; j++)
        {
            if(i == j)
                sum[i*j] += fp[i];
            else
                sum[i*j] += fp[i] + fp[j];
        }
    }
    int ans = 0; LL Wlcm = 1LL;
    for(int i = m; i >= 1; i--)
    {
        if(sum[i] > ans)
        {
            Wlcm = i;
            ans = sum[i];
        }
        //num[i] = 0;
    }
    LL Tlcm = 1LL; stack<int> S;
    for(int i = n; i >= 1; i--)
    {
        if(Wlcm % a[i] == 0)
        {
            Tlcm = lcm(Tlcm, a[i]);
            S.push(i);
        }
    }
    cout << Tlcm << " " << ans << endl;
    int num = 0;
    while(!S.empty())
    {
        if(num) cout << " ";
        cout << S.top(); S.pop(); num++;
    }
    cout << endl;
    return 0;
}


### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值