GItHUB push 下来的 Realsense-ros包,使用IntelRealSense

本文介绍了如何在Linux上使用Intel实感SDK,包括通过预构建包在不同UbuntuLTS内核版本下安装,以及在非LTS版本和源代码编译的情况下的步骤。还涉及了aptHTTPS支持、软件包注册和验证安装的方法。

Linux查看内核版本:

uname -r

Linux 发行版

使用预构建包

英特尔®实感™ SDK 2.0 为基于 Intel X86/AMD64 的 Debian 发行版提供 dpkg 格式的 Ubuntu 16/18/20/22 LTS 安装包。
实感 DKMS 内核驱动程序包 () 支持 Ubuntu LTS 内核 4.4、4.8、4.10、4.13、4.15、4.18*、5.0*、5.3*、5.4、5.13 和 5.15。有关更多详细信息,请参阅 Ubuntu 内核发布时间表librealsense2-dkms

从源代码进行配置和构建

虽然我们强烈建议尽可能使用 DKMS 软件包,但在某些情况下,需要手动安装和修补系统:

  • 将 SDK 与非 LTS Ubuntu 内核版本配合使用:**4.16**
  • 将用户特定的补丁/模块与 SDK 集成。librealsense
  • 调整替代内核/发行版的补丁。

这些步骤在 Linux 手动安装指南中进行了描述

安装软件包:

  • 注册服务器的公钥:
sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-key F6E65AC044F831AC80A06380C8B3A55A6F3EFCDE || sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-key F6E65AC044F831AC80A06380C8B3A55A6F3EFCDE
  • 确保安装了 apt HTTPS 支持:

sudo apt-get install apt-transport-https
  • 将服务器添加到存储库列表:

sudo add-apt-repository "deb https://librealsense.intel.com/Debian/apt-repo $(lsb_release -cs) main" -u
  • 安装库(如果升级软件包,请参阅下面的部分):


    上面两行将部署 librealsense2 udev 规则,构建和激活内核模块、运行时库以及可执行的演示和工具。

  • (可选)安装开发人员包和调试包:

sudo apt-get install librealsense2-dkms

sudo apt-get install librealsense2-utils
  • 重新连接英特尔实感深度摄像头并运行:以验证安装。realsense-viewer

  • 也可通过下面命令直接查看点云信息

    realsense-viewer
  • 也可通过下面命令直接查看点云信息

    roslaunch realsense2_camera demo_pointcloud.launch
  • 假设图像尺寸是640*480,帧率30Hz。由于彩色图像为3通道,每通道8位,那么每秒的字节数就是:640*480*3*30 = 27648000(B),换算成MB(除以两次1024)得到带宽:26.37MB/s。

  • 深度图像为单通道,每通道16位,每秒的字节数就是:640*480*2*30 = 18432000(B),则带宽为:17.57MB/s。

    通过以下命令查看原始图片的带宽:

    rostopic bw /camera/color/image_raw
    rostopic bw /camera/depth/image_rect_raw
    

方法二icon-default.png?t=N7T8https://github.com/IntelRealSense/realsense-ros/tree/ros1-legacy

问题icon-default.png?t=N7T8https://github.com/IntelRealSense/realsense-ros/issues/708解决办法icon-default.png?t=N7T8https://github.com/IntelRealSense/realsense-ros/tree/ros1-legacy

我想在UR5e上面复现github上的这个代码,但我不知道怎么开始。括配置中控之类的,请你把我当成一个小白来详细教我。# Diffusion Policy [[Project page]](https://diffusion-policy.cs.columbia.edu/) [[Paper]](https://diffusion-policy.cs.columbia.edu/#paper) [[Data]](https://diffusion-policy.cs.columbia.edu/data/) [[Colab (state)]](https://colab.research.google.com/drive/1gxdkgRVfM55zihY9TFLja97cSVZOZq2B?usp=sharing) [[Colab (vision)]](https://colab.research.google.com/drive/18GIHeOQ5DyjMN8iIRZL2EKZ0745NLIpg?usp=sharing) [Cheng Chi](http://cheng-chi.github.io/)<sup>1</sup>, [Siyuan Feng](https://www.cs.cmu.edu/~sfeng/)<sup>2</sup>, [Yilun Du](https://yilundu.github.io/)<sup>3</sup>, [Zhenjia Xu](https://www.zhenjiaxu.com/)<sup>1</sup>, [Eric Cousineau](https://www.eacousineau.com/)<sup>2</sup>, [Benjamin Burchfiel](http://www.benburchfiel.com/)<sup>2</sup>, [Shuran Song](https://www.cs.columbia.edu/~shurans/)<sup>1</sup> <sup>1</sup>Columbia University, <sup>2</sup>Toyota Research Institute, <sup>3</sup>MIT <img src="media/teaser.png" alt="drawing" width="100%"/> <img src="media/multimodal_sim.png" alt="drawing" width="100%"/> ## 🛝 Try it out! Our self-contained Google Colab notebooks is the easiest way to play with Diffusion Policy. We provide separate notebooks for [state-based environment](https://colab.research.google.com/drive/1gxdkgRVfM55zihY9TFLja97cSVZOZq2B?usp=sharing) and [vision-based environment](https://colab.research.google.com/drive/18GIHeOQ5DyjMN8iIRZL2EKZ0745NLIpg?usp=sharing). ## 🧾 Checkout our experiment logs! For each experiment used to generate Table I,II and IV in the [paper](https://diffusion-policy.cs.columbia.edu/#paper), we provide: 1. A `config.yaml` that contains all parameters needed to reproduce the experiment. 2. Detailed training/eval `logs.json.txt` for every training step. 3. Checkpoints for the best `epoch=*-test_mean_score=*.ckpt` and last `latest.ckpt` epoch of each run. Experiment logs are hosted on our website as nested directories in format: `https://diffusion-policy.cs.columbia.edu/data/experiments/<image|low_dim>/<task>/<method>/` Within each experiment directory you may find: ``` . ├── config.yaml ├── metrics │   └── logs.json.txt ├── train_0 │   ├── checkpoints │   │   ├── epoch=0300-test_mean_score=1.000.ckpt │   │   └── latest.ckpt │   └── logs.json.txt ├── train_1 │   ├── checkpoints │   │   ├── epoch=0250-test_mean_score=1.000.ckpt │   │   └── latest.ckpt │   └── logs.json.txt └── train_2 ├── checkpoints │   ├── epoch=0250-test_mean_score=1.000.ckpt │   └── latest.ckpt └── logs.json.txt ``` The `metrics/logs.json.txt` file aggregates evaluation metrics from all 3 training runs every 50 epochs using `multirun_metrics.py`. The numbers reported in the paper correspond to `max` and `k_min_train_loss` aggregation keys. To download all files in a subdirectory, use: ```console $ wget --recursive --no-parent --no-host-directories --relative --reject="index.html*" https://diffusion-policy.cs.columbia.edu/data/experiments/low_dim/square_ph/diffusion_policy_cnn/ ``` ## 🛠️ Installation ### 🖥️ Simulation To reproduce our simulation benchmark results, install our conda environment on a Linux machine with Nvidia GPU. On Ubuntu 20.04 you need to install the following apt packages for mujoco: ```console $ sudo apt install -y libosmesa6-dev libgl1-mesa-glx libglfw3 patchelf ``` We recommend [Mambaforge](https://github.com/conda-forge/miniforge#mambaforge) instead of the standard anaconda distribution for faster installation: ```console $ mamba env create -f conda_environment.yaml ``` but you can use conda as well: ```console $ conda env create -f conda_environment.yaml ``` The `conda_environment_macos.yaml` file is only for development on MacOS and does not have full support for benchmarks. ### 🦾 Real Robot Hardware (for Push-T): * 1x [UR5-CB3](https://www.universal-robots.com/cb3) or [UR5e](https://www.universal-robots.com/products/ur5-robot/) ([RTDE Interface](https://www.universal-robots.com/articles/ur/interface-communication/real-time-data-exchange-rtde-guide/) is required) * 2x [RealSense D415](https://www.intelrealsense.com/depth-camera-d415/) * 1x [3Dconnexion SpaceMouse](https://3dconnexion.com/us/product/spacemouse-wireless/) (for teleop) * 1x [Millibar Robotics Manual Tool Changer](https://www.millibar.com/manual-tool-changer/) (only need robot side) * 1x 3D printed [End effector](https://cad.onshape.com/documents/a818888644a15afa6cc68ee5/w/2885b48b018cda84f425beca/e/3e8771c2124cee024edd2fed?renderMode=0&uiState=63ffcba6631ca919895e64e5) * 1x 3D printed [T-block](https://cad.onshape.com/documents/f1140134e38f6ed6902648d5/w/a78cf81827600e4ff4058d03/e/f35f57fb7589f72e05c76caf?renderMode=0&uiState=63ffcbc9af4a881b344898ee) * USB-C cables and screws for RealSense Software: * Ubuntu 20.04.3 (tested) * Mujoco dependencies: `sudo apt install libosmesa6-dev libgl1-mesa-glx libglfw3 patchelf` * [RealSense SDK](https://github.com/IntelRealSense/librealsense/blob/master/doc/distribution_linux.md) * Spacemouse dependencies: `sudo apt install libspnav-dev spacenavd; sudo systemctl start spacenavd` * Conda environment `mamba env create -f conda_environment_real.yaml` ## 🖥️ Reproducing Simulation Benchmark Results ### Download Training Data Under the repo root, create data subdirectory: ```console [diffusion_policy]$ mkdir data && cd data ``` Download the corresponding zip file from [https://diffusion-policy.cs.columbia.edu/data/training/](https://diffusion-policy.cs.columbia.edu/data/training/) ```console [data]$ wget https://diffusion-policy.cs.columbia.edu/data/training/pusht.zip ``` Extract training data: ```console [data]$ unzip pusht.zip && rm -f pusht.zip && cd .. ``` Grab config file for the corresponding experiment: ```console [diffusion_policy]$ wget -O image_pusht_diffusion_policy_cnn.yaml https://diffusion-policy.cs.columbia.edu/data/experiments/image/pusht/diffusion_policy_cnn/config.yaml ``` ### Running for a single seed Activate conda environment and login to [wandb](https://wandb.ai) (if you haven't already). ```console [diffusion_policy]$ conda activate robodiff (robodiff)[diffusion_policy]$ wandb login ``` Launch training with seed 42 on GPU 0. ```console (robodiff)[diffusion_policy]$ python train.py --config-dir=. --config-name=image_pusht_diffusion_policy_cnn.yaml training.seed=42 training.device=cuda:0 hydra.run.dir='data/outputs/${now:%Y.%m.%d}/${now:%H.%M.%S}_${name}_${task_name}' ``` This will create a directory in format `data/outputs/yyyy.mm.dd/hh.mm.ss_<method_name>_<task_name>` where configs, logs and checkpoints are written to. The policy will be evaluated every 50 epochs with the success rate logged as `test/mean_score` on wandb, as well as videos for some rollouts. ```console (robodiff)[diffusion_policy]$ tree data/outputs/2023.03.01/20.02.03_train_diffusion_unet_hybrid_pusht_image -I wandb data/outputs/2023.03.01/20.02.03_train_diffusion_unet_hybrid_pusht_image ├── checkpoints │ ├── epoch=0000-test_mean_score=0.134.ckpt │ └── latest.ckpt ├── .hydra │ ├── config.yaml │ ├── hydra.yaml │ └── overrides.yaml ├── logs.json.txt ├── media │ ├── 2k5u6wli.mp4 │ ├── 2kvovxms.mp4 │ ├── 2pxd9f6b.mp4 │ ├── 2q5gjt5f.mp4 │ ├── 2sawbf6m.mp4 │ └── 538ubl79.mp4 └── train.log 3 directories, 13 files ``` ### Running for multiple seeds Launch local ray cluster. For large scale experiments, you might want to setup an [AWS cluster with autoscaling](https://docs.ray.io/en/master/cluster/vms/user-guides/launching-clusters/aws.html). All other commands remain the same. ```console (robodiff)[diffusion_policy]$ export CUDA_VISIBLE_DEVICES=0,1,2 # select GPUs to be managed by the ray cluster (robodiff)[diffusion_policy]$ ray start --head --num-gpus=3 ``` Launch a ray client which will start 3 training workers (3 seeds) and 1 metrics monitor worker. ```console (robodiff)[diffusion_policy]$ python ray_train_multirun.py --config-dir=. --config-name=image_pusht_diffusion_policy_cnn.yaml --seeds=42,43,44 --monitor_key=test/mean_score -- multi_run.run_dir='data/outputs/${now:%Y.%m.%d}/${now:%H.%M.%S}_${name}_${task_name}' multi_run.wandb_name_base='${now:%Y.%m.%d-%H.%M.%S}_${name}_${task_name}' ``` In addition to the wandb log written by each training worker individually, the metrics monitor worker will log to wandb project `diffusion_policy_metrics` for the metrics aggregated from all 3 training runs. Local config, logs and checkpoints will be written to `data/outputs/yyyy.mm.dd/hh.mm.ss_<method_name>_<task_name>` in a directory structure identical to our [training logs](https://diffusion-policy.cs.columbia.edu/data/experiments/): ```console (robodiff)[diffusion_policy]$ tree data/outputs/2023.03.01/22.13.58_train_diffusion_unet_hybrid_pusht_image -I 'wandb|media' data/outputs/2023.03.01/22.13.58_train_diffusion_unet_hybrid_pusht_image ├── config.yaml ├── metrics │ ├── logs.json.txt │ ├── metrics.json │ └── metrics.log ├── train_0 │ ├── checkpoints │ │ ├── epoch=0000-test_mean_score=0.174.ckpt │ │ └── latest.ckpt │ ├── logs.json.txt │ └── train.log ├── train_1 │ ├── checkpoints │ │ ├── epoch=0000-test_mean_score=0.131.ckpt │ │ └── latest.ckpt │ ├── logs.json.txt │ └── train.log └── train_2 ├── checkpoints │ ├── epoch=0000-test_mean_score=0.105.ckpt │ └── latest.ckpt ├── logs.json.txt └── train.log 7 directories, 16 files ``` ### 🆕 Evaluate Pre-trained Checkpoints Download a checkpoint from the published training log folders, such as [https://diffusion-policy.cs.columbia.edu/data/experiments/low_dim/pusht/diffusion_policy_cnn/train_0/checkpoints/epoch=0550-test_mean_score=0.969.ckpt](https://diffusion-policy.cs.columbia.edu/data/experiments/low_dim/pusht/diffusion_policy_cnn/train_0/checkpoints/epoch=0550-test_mean_score=0.969.ckpt). Run the evaluation script: ```console (robodiff)[diffusion_policy]$ python eval.py --checkpoint data/0550-test_mean_score=0.969.ckpt --output_dir data/pusht_eval_output --device cuda:0 ``` This will generate the following directory structure: ```console (robodiff)[diffusion_policy]$ tree data/pusht_eval_output data/pusht_eval_output ├── eval_log.json └── media ├── 1fxtno84.mp4 ├── 224l7jqd.mp4 ├── 2fo4btlf.mp4 ├── 2in4cn7a.mp4 ├── 34b3o2qq.mp4 └── 3p7jqn32.mp4 1 directory, 7 files ``` `eval_log.json` contains metrics that is logged to wandb during training: ```console (robodiff)[diffusion_policy]$ cat data/pusht_eval_output/eval_log.json { "test/mean_score": 0.9150393806777066, "test/sim_max_reward_4300000": 1.0, "test/sim_max_reward_4300001": 0.9872969750774386, ... "train/sim_video_1": "data/pusht_eval_output//media/2fo4btlf.mp4" } ``` ## 🦾 Demo, Training and Eval on a Real Robot Make sure your UR5 robot is running and accepting command from its network interface (emergency stop button within reach at all time), your RealSense cameras plugged in to your workstation (tested with `realsense-viewer`) and your SpaceMouse connected with the `spacenavd` daemon running (verify with `systemctl status spacenavd`). Start the demonstration collection script. Press "C" to start recording. Use SpaceMouse to move the robot. Press "S" to stop recording. ```console (robodiff)[diffusion_policy]$ python demo_real_robot.py -o data/demo_pusht_real --robot_ip 192.168.0.204 ``` This should result in a demonstration dataset in `data/demo_pusht_real` with in the same structure as our example [real Push-T training dataset](https://diffusion-policy.cs.columbia.edu/data/training/pusht_real.zip). To train a Diffusion Policy, launch training with config: ```console (robodiff)[diffusion_policy]$ python train.py --config-name=train_diffusion_unet_real_image_workspace task.dataset_path=data/demo_pusht_real ``` Edit [`diffusion_policy/config/task/real_pusht_image.yaml`](./diffusion_policy/config/task/real_pusht_image.yaml) if your camera setup is different. Assuming the training has finished and you have a checkpoint at `data/outputs/blah/checkpoints/latest.ckpt`, launch the evaluation script with: ```console python eval_real_robot.py -i data/outputs/blah/checkpoints/latest.ckpt -o data/eval_pusht_real --robot_ip 192.168.0.204 ``` Press "C" to start evaluation (handing control over to the policy). Press "S" to stop the current episode. ## 🗺️ Codebase Tutorial This codebase is structured under the requirement that: 1. implementing `N` tasks and `M` methods will only require `O(N+M)` amount of code instead of `O(N*M)` 2. while retaining maximum flexibility. To achieve this requirement, we 1. maintained a simple unified interface between tasks and methods and 2. made the implementation of the tasks and the methods independent of each other. These design decisions come at the cost of code repetition between the tasks and the methods. However, we believe that the benefit of being able to add/modify task/methods without affecting the remainder and being able understand a task/method by reading the code linearly outweighs the cost of copying and pasting 😊. ### The Split On the task side, we have: * `Dataset`: adapts a (third-party) dataset to the interface. * `EnvRunner`: executes a `Policy` that accepts the interface and produce logs and metrics. * `config/task/<task_name>.yaml`: contains all information needed to construct `Dataset` and `EnvRunner`. * (optional) `Env`: an `gym==0.21.0` compatible class that encapsulates the task environment. On the policy side, we have: * `Policy`: implements inference according to the interface and part of the training process. * `Workspace`: manages the life-cycle of training and evaluation (interleaved) of a method. * `config/<workspace_name>.yaml`: contains all information needed to construct `Policy` and `Workspace`. ### The Interface #### Low Dim A [`LowdimPolicy`](./diffusion_policy/policy/base_lowdim_policy.py) takes observation dictionary: - `"obs":` Tensor of shape `(B,To,Do)` and predicts action dictionary: - `"action": ` Tensor of shape `(B,Ta,Da)` A [`LowdimDataset`](./diffusion_policy/dataset/base_dataset.py) returns a sample of dictionary: - `"obs":` Tensor of shape `(To, Do)` - `"action":` Tensor of shape `(Ta, Da)` Its `get_normalizer` method returns a [`LinearNormalizer`](./diffusion_policy/model/common/normalizer.py) with keys `"obs","action"`. The `Policy` handles normalization on GPU with its copy of the `LinearNormalizer`. The parameters of the `LinearNormalizer` is saved as part of the `Policy`'s weights checkpoint. #### Image A [`ImagePolicy`](./diffusion_policy/policy/base_image_policy.py) takes observation dictionary: - `"key0":` Tensor of shape `(B,To,*)` - `"key1":` Tensor of shape e.g. `(B,To,H,W,3)` ([0,1] float32) and predicts action dictionary: - `"action": ` Tensor of shape `(B,Ta,Da)` A [`ImageDataset`](./diffusion_policy/dataset/base_dataset.py) returns a sample of dictionary: - `"obs":` Dict of - `"key0":` Tensor of shape `(To, *)` - `"key1":` Tensor fo shape `(To,H,W,3)` - `"action":` Tensor of shape `(Ta, Da)` Its `get_normalizer` method returns a [`LinearNormalizer`](./diffusion_policy/model/common/normalizer.py) with keys `"key0","key1","action"`. #### Example ``` To = 3 Ta = 4 T = 6 |o|o|o| | | |a|a|a|a| |o|o| | |a|a|a|a|a| | | | | |a|a| ``` Terminology in the paper: `varname` in the codebase - Observation Horizon: `To|n_obs_steps` - Action Horizon: `Ta|n_action_steps` - Prediction Horizon: `T|horizon` The classical (e.g. MDP) single step observation/action formulation is included as a special case where `To=1` and `Ta=1`. ## 🔩 Key Components ### `Workspace` A `Workspace` object encapsulates all states and code needed to run an experiment. * Inherits from [`BaseWorkspace`](./diffusion_policy/workspace/base_workspace.py). * A single `OmegaConf` config object generated by `hydra` should contain all information needed to construct the Workspace object and running experiments. This config correspond to `config/<workspace_name>.yaml` + hydra overrides. * The `run` method contains the entire pipeline for the experiment. * Checkpoints happen at the `Workspace` level. All training states implemented as object attributes are automatically saved by the `save_checkpoint` method. * All other states for the experiment should be implemented as local variables in the `run` method. The entrypoint for training is `train.py` which uses `@hydra.main` decorator. Read [hydra](https://hydra.cc/)'s official documentation for command line arguments and config overrides. For example, the argument `task=<task_name>` will replace the `task` subtree of the config with the content of `config/task/<task_name>.yaml`, thereby selecting the task to run for this experiment. ### `Dataset` A `Dataset` object: * Inherits from `torch.utils.data.Dataset`. * Returns a sample conforming to [the interface](#the-interface) depending on whether the task has Low Dim or Image observations. * Has a method `get_normalizer` that returns a `LinearNormalizer` conforming to [the interface](#the-interface). Normalization is a very common source of bugs during project development. It is sometimes helpful to print out the specific `scale` and `bias` vectors used for each key in the `LinearNormalizer`. Most of our implementations of `Dataset` uses a combination of [`ReplayBuffer`](#replaybuffer) and [`SequenceSampler`](./diffusion_policy/common/sampler.py) to generate samples. Correctly handling padding at the beginning and the end of each demonstration episode according to `To` and `Ta` is important for good performance. Please read our [`SequenceSampler`](./diffusion_policy/common/sampler.py) before implementing your own sampling method. ### `Policy` A `Policy` object: * Inherits from `BaseLowdimPolicy` or `BaseImagePolicy`. * Has a method `predict_action` that given observation dict, predicts actions conforming to [the interface](#the-interface). * Has a method `set_normalizer` that takes in a `LinearNormalizer` and handles observation/action normalization internally in the policy. * (optional) Might has a method `compute_loss` that takes in a batch and returns the loss to be optimized. * (optional) Usually each `Policy` class correspond to a `Workspace` class due to the differences of training and evaluation process between methods. ### `EnvRunner` A `EnvRunner` object abstracts away the subtle differences between different task environments. * Has a method `run` that takes a `Policy` object for evaluation, and returns a dict of logs and metrics. Each value should be compatible with `wandb.log`. To maximize evaluation speed, we usually vectorize environments using our modification of [`gym.vector.AsyncVectorEnv`](./diffusion_policy/gym_util/async_vector_env.py) which runs each individual environment in a separate process (workaround python GIL). ⚠️ Since subprocesses are launched using `fork` on linux, you need to be specially careful for environments that creates its OpenGL context during initialization (e.g. robosuite) which, once inherited by the child process memory space, often causes obscure bugs like segmentation fault. As a workaround, you can provide a `dummy_env_fn` that constructs an environment without initializing OpenGL. ### `ReplayBuffer` The [`ReplayBuffer`](./diffusion_policy/common/replay_buffer.py) is a key data structure for storing a demonstration dataset both in-memory and on-disk with chunking and compression. It makes heavy use of the [`zarr`](https://zarr.readthedocs.io/en/stable/index.html) format but also has a `numpy` backend for lower access overhead. On disk, it can be stored as a nested directory (e.g. `data/pusht_cchi_v7_replay.zarr`) or a zip file (e.g. `data/robomimic/datasets/square/mh/image_abs.hdf5.zarr.zip`). Due to the relative small size of our datasets, it's often possible to store the entire image-based dataset in RAM with [`Jpeg2000` compression](./diffusion_policy/codecs/imagecodecs_numcodecs.py) which eliminates disk IO during training at the expense increasing of CPU workload. Example: ``` data/pusht_cchi_v7_replay.zarr ├── data │ ├── action (25650, 2) float32 │ ├── img (25650, 96, 96, 3) float32 │ ├── keypoint (25650, 9, 2) float32 │ ├── n_contacts (25650, 1) float32 │ └── state (25650, 5) float32 └── meta └── episode_ends (206,) int64 ``` Each array in `data` stores one data field from all episodes concatenated along the first dimension (time). The `meta/episode_ends` array stores the end index for each episode along the fist dimension. ### `SharedMemoryRingBuffer` The [`SharedMemoryRingBuffer`](./diffusion_policy/shared_memory/shared_memory_ring_buffer.py) is a lock-free FILO data structure used extensively in our [real robot implementation](./diffusion_policy/real_world) to utilize multiple CPU cores while avoiding pickle serialization and locking overhead for `multiprocessing.Queue`. As an example, we would like to get the most recent `To` frames from 5 RealSense cameras. We launch 1 realsense SDK/pipeline per process using [`SingleRealsense`](./diffusion_policy/real_world/single_realsense.py), each continuously writes the captured images into a `SharedMemoryRingBuffer` shared with the main process. We can very quickly get the last `To` frames in the main process due to the FILO nature of `SharedMemoryRingBuffer`. We also implemented [`SharedMemoryQueue`](./diffusion_policy/shared_memory/shared_memory_queue.py) for FIFO, which is used in [`RTDEInterpolationController`](./diffusion_policy/real_world/rtde_interpolation_controller.py). ### `RealEnv` In contrast to [OpenAI Gym](https://gymnasium.farama.org/), our polices interact with the environment asynchronously. In [`RealEnv`](./diffusion_policy/real_world/real_env.py), the `step` method in `gym` is split into two methods: `get_obs` and `exec_actions`. The `get_obs` method returns the latest observation from `SharedMemoryRingBuffer` as well as their corresponding timestamps. This method can be call at any time during an evaluation episode. The `exec_actions` method accepts a sequence of actions and timestamps for the expected time of execution for each step. Once called, the actions are simply enqueued to the `RTDEInterpolationController`, and the method returns without blocking for execution. ## 🩹 Adding a Task Read and imitate: * `diffusion_policy/dataset/pusht_image_dataset.py` * `diffusion_policy/env_runner/pusht_image_runner.py` * `diffusion_policy/config/task/pusht_image.yaml` Make sure that `shape_meta` correspond to input and output shapes for your task. Make sure `env_runner._target_` and `dataset._target_` point to the new classes you have added. When training, add `task=<your_task_name>` to `train.py`'s arguments. ## 🩹 Adding a Method Read and imitate: * `diffusion_policy/workspace/train_diffusion_unet_image_workspace.py` * `diffusion_policy/policy/diffusion_unet_image_policy.py` * `diffusion_policy/config/train_diffusion_unet_image_workspace.yaml` Make sure your workspace yaml's `_target_` points to the new workspace class you created. ## 🏷️ License This repository is released under the MIT license. See [LICENSE](LICENSE) for additional details. ## 🙏 Acknowledgement * Our [`ConditionalUnet1D`](./diffusion_policy/model/diffusion/conditional_unet1d.py) implementation is adapted from [Planning with Diffusion](https://github.com/jannerm/diffuser). * Our [`TransformerForDiffusion`](./diffusion_policy/model/diffusion/transformer_for_diffusion.py) implementation is adapted from [MinGPT](https://github.com/karpathy/minGPT). * The [BET](./diffusion_policy/model/bet) baseline is adapted from [its original repo](https://github.com/notmahi/bet). * The [IBC](./diffusion_policy/policy/ibc_dfo_lowdim_policy.py) baseline is adapted from [Kevin Zakka's reimplementation](https://github.com/kevinzakka/ibc). * The [Robomimic](https://github.com/ARISE-Initiative/robomimic) tasks and [`ObservationEncoder`](https://github.com/ARISE-Initiative/robomimic/blob/master/robomimic/models/obs_nets.py) are used extensively in this project. * The [Push-T](./diffusion_policy/env/pusht) task is adapted from [IBC](https://github.com/google-research/ibc). * The [Block Pushing](./diffusion_policy/env/block_pushing) task is adapted from [BET](https://github.com/notmahi/bet) and [IBC](https://github.com/google-research/ibc). * The [Kitchen](./diffusion_policy/env/kitchen) task is adapted from [BET](https://github.com/notmahi/bet) and [Relay Policy Learning](https://github.com/google-research/relay-policy-learning). * Our [shared_memory](./diffusion_policy/shared_memory) data structures are heavily inspired by [shared-ndarray2](https://gitlab.com/osu-nrsg/shared-ndarray2).
06-29
使用 `catkin_make -DCATKIN_ENABLE_TESTING=False -DCMAKE_BUILD_TYPE=Release` 编译 realsense-ros 2.3.1 时提示 `/home/jewer/realsense-ros/src` 不存在,可尝试以下解决办法: ### 1. 检查文件路径 确认 realsense-ros 软件是否确实被下载到了 `/home/jewer/realsense-ros` 目录。可以使用 `ls` 命令查看该目录是否存在: ```bash ls /home/jewer/realsense-ros ``` 如果该目录不存在,可能是下载过程出现问题,需要重新下载。可以使用 `git` 命令重新克隆: ```bash cd /home/jewer git clone -b 2.3.1 https://github.com/IntelRealSense/realsense-ros.git ``` ### 2. 检查文件完整性 即使目录存在,也可能是文件不完整。删除现有的 realsense-ros 目录,然后重新克隆: ```bash rm -rf /home/jewer/realsense-ros cd /home/jewer git clone -b 2.3.1 https://github.com/IntelRealSense/realsense-ros.git ``` ### 3. 检查环境变量 确保 ROS 环境变量已正确设置。可以在终端中运行以下命令来加载 ROS 环境: ```bash source /opt/ros/<发行版>/setup.bash ``` 其中 `<发行版>` 是你所使用ROS 发行版,如 `melodic`、`noetic` 等。 ### 4. 检查 catkin 工作空间 确认 realsense-ros 软件是否位于 catkin 工作空间的 `src` 目录下。如果不在,需要将其移动到正确的位置: ```bash mv /home/jewer/realsense-ros ~/catkin_ws/src/ ``` 然后进入 catkin 工作空间并重新编译: ```bash cd ~/catkin_ws catkin_make -DCATKIN_ENABLE_TESTING=False -DCMAKE_BUILD_TYPE=Release ``` ### 5. 检查依赖项 确保 realsense-ros 所需的依赖项已正确安装。可以使用 `rosdep` 来安装依赖项: ```bash cd ~/catkin_ws rosdep install --from-paths src --ignore-src -r -y ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

没有余地 Meiyouyudi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值