【数据结构 树状数组】JZOJ_6342 Tiny Counting

题意

求四元组 ( a , b , c , d ) (a,b,c,d) (a,b,c,d),满足 a &lt; b ; c &lt; d ; S a &lt; S b ; S c &gt; S d a&lt;b;c&lt;d;S_a&lt;S_b;S_c&gt;S_d a<b;c<d;Sa<Sb;Sc>Sd a b c d abcd abcd不相等。

思路

若能相等,答案即顺序对 ∗ * 逆序对,否则考虑以下重复点的四种情况:
a = c a=c a=c
( a = c ) &lt; b , d (a=c)&lt;b,d (a=c)<b,d S d &lt; S a = c &lt; S b S_d&lt;S_{a=c}&lt;S_b Sd<Sa=c<Sb

a = d a=d a=d
c &lt; ( a = d ) &lt; b c&lt;(a=d)&lt;b c<(a=d)<b S a = d &lt; S b , S c S_{a=d}&lt;S_{b},S_c Sa=d<Sb,Sc

b = c b=c b=c
a &lt; ( b = c ) &lt; d a&lt;(b=c)&lt;d a<(b=c)<d S b = c &gt; S a , d S_{b=c}&gt;S_{a,d} Sb=c>Sa,d

b = d b=d b=d
a , c &lt; ( b = d ) a,c&lt;(b=d) a,c<(b=d) S a &lt; S b = d &lt; S c S_a&lt;S_{b=d}&lt;S_c Sa<Sb=d<Sc
用树状数组求解。(我真是超级无敌大傻逼,连逆序对都不会求)

代码

#include <cstdio>
#include <cstring>
#include <algorithm>

int n;
long long ans, p, q;
long long t[100001], a[100001], b[100001], rs[100001], rb[100001], ls[100001], lb[100001];

void add(int x, int val) {
	for (; x <= n; x += x & -x)
		t[x] += val;
}

long long query(int x) {
	long long res = 0;
	for (; x; x -= x & -x)
		res += t[x];
	return res;
}

void init() {
	scanf("%d", &n);
	for (int i = 1; i <= n; i++)
		scanf("%d", &a[i]), b[i] = a[i];
	std::sort(b + 1, b + n + 1);
	int m = std::unique(b + 1, b + n + 1) - b - 1;
	for (int i = 1; i <= n; i++)
		a[i] = std::lower_bound(b + 1, b + m + 1, a[i]) - b;
}

int main() {
	init();
	for (int i = n; i >= 1; i--)
		p += rs[i] = query(a[i] - 1), rb[i] = query(n) - query(a[i]), add(a[i], 1);
	memset(t, 0, sizeof(t));
	for (int i = 1; i <= n; i++)
		q += ls[i] = query(a[i] - 1), lb[i] = query(n) - query(a[i]), add(a[i], 1);
	ans = p * q;
	for (int i = 1; i <= n; i++)
		ans -= rb[i] * rs[i] + rb[i] * lb[i] + rs[i] * ls[i] + lb[i] * ls[i];
	printf("%lld", ans);
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值