论文实现:Reactive Nonholonomic Trajectory Generation via Parametric Optimal Control

1. 多项式螺旋

曲率:
κ(s)=a0+a1s+a2s2+a3s3+a4s4+a5s5 \begin{align} \kappa(s) = a_0 + a_1s + a_2s^2 + a_3s^3 + a_4s^4 + a_5s^5 \end{align} κ(s)=a0+a1s+a2s2+a3s3+a4s4+a5s5
机器人朝向:
θ(s)=a0s+a1s22+a2s33+a3s44+a4s55+a5s66 \begin{align} \theta(s) = a_0s + \frac{a_1s^2}{2} + \frac{a_2s^3}{3} + \frac{a_3s^4}{4} + \frac{a_4s^5}{5} + \frac{a_5s^6}{6} \end{align} θ(s)=a0s+2a1s2+3a2s3+4a3s4+5a4s5+6a5s6
轨迹:
x(s)=∫0scos⁡(θ(s))ds \begin{align} x(s) = \int_0^s{\cos(\theta(s))ds} \end{align} x(s)=0scos(θ(s))ds
y(s)=∫0ssin⁡(θ(s))ds \begin{align} y(s) = \int_0^s{\sin(\theta(s))ds} \end{align} y(s)=0ssin(θ(s))ds

2. 边界条件

初始条件:s=0,x=0,y=0,θ=0s = 0,x = 0, y = 0, \theta = 0s=0x=0,y=0,θ=0
结束条件:s=sf,x=xf,y=yf,θ=θfs = s_f, x = x_f, y = y_f, \theta = \theta_fs=sf,x=xf,y=yf,θ=θf
xb=[xf yf θf]T \begin{align} \bf{x_b} = \left[ x_f \ y_f \ \theta_f \right]^T \end{align} xb=[xf yf θf]T
参数:
q=[a0 a1 a2 a3 a4 a5 sf]T \begin{align} \bf{q} = \left[a_0 \ a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ s_f \right]^T \end{align} q=[a0 a1 a2 a3 a4 a5 sf]T
边界条件:
g(q)=h(q)−xb={x(sf)−xf=0y(sf)−yf=0θ(sf)−θf=0 \begin{align} \bf{g(q)} = \bf{h(q)} - \bf{x_b} = \begin{cases} x(s_f) - x_f = 0 \\ y(s_f) - y_f = 0 \\ \theta(s_f) - \theta_f = 0 \end{cases} \end{align} g(q)=h(q)xb=x(sf)xf=0y(sf)yf=0θ(sf)θf=0

3. 优化问题

minimize:
J(q)=12∫0sf[κ(q)]2ds \begin{align} J(\bf{q}) = \frac{1}{2}\int_0^{s_f}[\kappa(\bf{q})]^2ds \end{align} J(q)=210sf[κ(q)]2ds
subject to:
g(q)=0sffree \begin{align} \bf{g(q)} = 0 \quad s_f \quad free \end{align} g(q)=0sffree

4. Hamiltonian

H(q,λ)=J(q)+λTg(q) \begin{align} \bf{H}(\bf{q}, \bf{\lambda}) = J(\bf{q}) + \bf{\lambda}^T \bf{g(q)} \end{align} H(q,λ)=J(q)+λTg(q)

5. 参数更新方程

看着和牛顿二阶梯度法形式一致:
HΔx=−JT \begin{align} \bf{H}\Delta \bf{x} = -\bf{J}^T \end{align} HΔx=JT
H=[δ2Hδq2(q,λ)δδqg(q)Tδδqg(q)0] \begin{align} \bf{H} = \begin{bmatrix} \frac{\delta^2 \bf{H}}{\delta \bf{q}^2}(\bf{q}, \bf{\lambda}) & \frac{\delta}{\delta \bf{q}} \bf{g}(\bf{q})^T \\ \frac{\delta}{\delta \bf{q}}\bf{g}(\bf{q}) & \bf{0} \end{bmatrix} \end{align} H=[δq2δ2H(q,λ)δqδg(q)δqδg(q)T0]
Δx=[ΔqΔλ] \begin{align} \Delta \bf{x} = \begin{bmatrix} \Delta \bf{q} \\ \Delta \bf{\lambda} \end{bmatrix} \end{align} Δx=[ΔqΔλ]
JT=[(δδqH(q,λ))Tg(q)] \begin{align} \bf{J^T} = \begin{bmatrix} \bigg(\frac{\delta}{\delta \bf{q}}\bf{H}(\bf{q},\bf{\lambda})\bigg)^T \\ \bf{g}(\bf{q}) \end{bmatrix} \end{align} JT=(δqδH(q,λ))Tg(q)

H=[H7x7H3x7TH3x703x3] \begin{align} \bf{H} = \begin{bmatrix} \bf{H}_{7x7} & \bf{H}_{3x7}^T \\ \bf{H}_{3x7} & \bf{0}_{3x3} \end{bmatrix} \end{align} H=[H7x7H3x7H3x7T03x3]

H7x7=δ2J(q)δq2+δ2(λTg(q))δq2=δ2J(q)δq2+λ0δ2x(sf)δq2+λ1δ2y(sf)δq2+λ2δ2θ(sf)δq2=[sfsf22sf33sf44sf55sf66κfsf22sf33sf44sf55sf66sf77sfκfsf33sf44sf55sf66sf77sf88sf2κfsf44sf55sf66sf77sf88sf99sf3κfsf55sf66sf77sf88sf99sf1010sf4κfsf66sf77sf88sf99sf1010sf1111sf5κfκfsfκfsf2κfsf3κfsf4κfsf5κfkfkf′]+λ0[−C2(sf)−12C3(sf)−13C4(sf)−14C5(sf)−15C6(sf)−16C7(sf)−−sfsθf−12C3(sf)−14C4(sf)−16C5(sf)−18C6(sf)−110C7(sf)−112C8(sf)−12sf2sθf−13C4(sf)−16C5(sf)−19C6(sf)−112C7(sf)−115C8(sf)−118C9(sf)−13sf3sθf−14C5(sf)−18C6(sf)−112C7(sf)−116C8(sf)−120C9(sf)−124C10(sf)−14sf4sθf−15C6(sf)−110C7(sf)−115C8(sf)−120C9(sf)−125C10(sf)−130C11(sf)−15sf5sθf−16C7(sf)−112C8(sf)−118C9(sf)−124C10(sf)−130C11(sf)−136C12(sf)−16sf6sθf−sfsθf−12sf2sθf−13sf3sθf−14sf4sθf−15sf5sθf−16sf6sθf−κfsθf]+λ1[−S2(sf)−12S3(sf)−13S4(sf)−14S5(sf)−15S6(sf)−16S7(sf)−sfcθf−12S3(sf)−14S4(sf)−16S5(sf)−18S6(sf)−110S7(sf)−112S8(sf)12sf2cθf−13S4(sf)−16S5(sf)−19S6(sf)−112S7(sf)−115S8(sf)−118S9(sf)13sf3cθf−14S5(sf)−18S6(sf)−112S7(sf)−116S8(sf)−120S9(sf)−124S10(sf)14sf4cθf−15S6(sf)−110S7(sf)−115S8(sf)−120S9(sf)−125S10(sf)−130S11(sf)15sf5cθf−16S7(sf)−112S8(sf)−118S9(sf)−124S10(sf)−130S11(sf)−136S12(sf)16sf6cθfsfcθf12sf2cθf13sf3cθf14sf4cθf15sf5cθf16sf6cθfκfcθf]+λ2[0000001000000sf000000sf2000000sf3000000sf4000000sf51sfsf2sf3sf4sf5κf′]. \begin{align} \bf{H}_{7x7} &= \frac{\delta ^ 2 \bf{J}(\bf{q})}{\delta \bf{q}^2} + \frac{\delta ^ 2 (\bf{\lambda} ^ T \bf{g}(\bf{q}))}{\delta \bf{q}^2} \notag \\ &= \frac{\delta ^ 2 \bf{J}(\bf{q})}{\delta \bf{q}^2} + \lambda_0\frac{\delta ^ 2 x(s_f)}{\delta \bf{q}^2} + \lambda_1\frac{\delta ^ 2 y(s_f)}{\delta \bf{q}^2} + \lambda_2\frac{\delta ^ 2 \theta(s_f)}{\delta \bf{q}^2} \notag \\ &= \begin{bmatrix} s_f & \frac{s_f^2}{2} & \frac{s_f^3}{3} & \frac{s_f^4}{4} & \frac{s_f^5}{5} & \frac{s_f^6}{6} & \kappa_f \\ \frac{s_f^2}{2} & \frac{s_f^3}{3} & \frac{s_f^4}{4} & \frac{s_f^5}{5} & \frac{s_f^6}{6} & \frac{s_f^7}{7} & s_f\kappa_f \\ \frac{s_f^3}{3} & \frac{s_f^4}{4} & \frac{s_f^5}{5} & \frac{s_f^6}{6} & \frac{s_f^7}{7} & \frac{s_f^8}{8} & s_f^2\kappa_f \\ \frac{s_f^4}{4} & \frac{s_f^5}{5} & \frac{s_f^6}{6} & \frac{s_f^7}{7} & \frac{s_f^8}{8}& \frac{s_f^9}{9} & s_f^3\kappa_f \\ \frac{s_f^5}{5} & \frac{s_f^6}{6} & \frac{s_f^7}{7} & \frac{s_f^8}{8} & \frac{s_f^9}{9} & \frac{s_f^{10}}{10} & s_f^4\kappa_f \\ \frac{s_f^6}{6} & \frac{s_f^7}{7} & \frac{s_f^8}{8} & \frac{s_f^9}{9} & \frac{s_f^{10}}{10} & \frac{s_f^{11}}{11} & s_f^5\kappa_f \\ \kappa_f & s_f\kappa_f & s_f^2\kappa_f & s_f^3\kappa_f & s_f^4\kappa_f & s_f^5\kappa_f & k_f k_f' \end{bmatrix} \notag \\ &+ \lambda_0\begin{bmatrix} -C^2(s_f) & -\frac{1}{2}C^3(s_f) & -\frac{1}{3}C^4(s_f) & -\frac{1}{4}C^5(s_f) & -\frac{1}{5}C^6(s_f) & -\frac{1}{6}C^7(s_f) - & -s_fs\theta_f \\ -\frac{1}{2}C^3(s_f) & -\frac{1}{4}C^4(s_f) & -\frac{1}{6}C^5(s_f) & -\frac{1}{8}C^6(s_f) & -\frac{1}{10}C^7(s_f) & -\frac{1}{12}C^8(s_f) & -\frac{1}{2}s_f^2 s\theta_f \\ -\frac{1}{3}C^4(s_f) & -\frac{1}{6}C^5(s_f) & -\frac{1}{9}C^6(s_f) & -\frac{1}{12}C^7(s_f) & -\frac{1}{15}C^8(s_f) & -\frac{1}{18}C^9(s_f) & -\frac{1}{3}s_f^3 s\theta_f \\ -\frac{1}{4}C^5(s_f) & -\frac{1}{8}C^6(s_f) & -\frac{1}{12}C^7(s_f) & -\frac{1}{16}C^8(s_f) & -\frac{1}{20}C^9(s_f) & -\frac{1}{24}C^{10}(s_f) & -\frac{1}{4}s_f^4 s\theta_f \\ -\frac{1}{5}C^6(s_f) & -\frac{1}{10}C^7(s_f) & -\frac{1}{15}C^8(s_f) & -\frac{1}{20}C^9(s_f) & -\frac{1}{25}C^{10}(s_f) & -\frac{1}{30}C^{11}(s_f) & -\frac{1}{5}s_f^5 s\theta_f \\ -\frac{1}{6}C^7(s_f) & -\frac{1}{12}C^8(s_f) & -\frac{1}{18}C^9(s_f) & -\frac{1}{24}C^{10}(s_f) & -\frac{1}{30}C^{11}(s_f) & -\frac{1}{36}C^{12}(s_f) & -\frac{1}{6}s_f^6 s\theta_f \\ -s_fs\theta_f & -\frac{1}{2}s_f^2 s\theta_f & -\frac{1}{3}s_f^3 s\theta_f & -\frac{1}{4}s_f^4 s\theta_f & -\frac{1}{5}s_f^5 s\theta_f & -\frac{1}{6}s_f^6 s\theta_f & -\kappa_f s\theta_f \end{bmatrix} \notag \\ &+\lambda_1\begin{bmatrix} -S^2(s_f) & -\frac{1}{2}S^3(s_f) & -\frac{1}{3}S^4(s_f) & -\frac{1}{4}S^5(s_f) & -\frac{1}{5}S^6(s_f) & -\frac{1}{6}S^7(s_f) - & s_fc\theta_f \\ -\frac{1}{2}S^3(s_f) & -\frac{1}{4}S^4(s_f) & -\frac{1}{6}S^5(s_f) & -\frac{1}{8}S^6(s_f) & -\frac{1}{10}S^7(s_f) & -\frac{1}{12}S^8(s_f) & \frac{1}{2}s_f^2 c\theta_f \\ -\frac{1}{3}S^4(s_f) & -\frac{1}{6}S^5(s_f) & -\frac{1}{9}S^6(s_f) & -\frac{1}{12}S^7(s_f) & -\frac{1}{15}S^8(s_f) & -\frac{1}{18}S^9(s_f) & \frac{1}{3}s_f^3 c\theta_f \\ -\frac{1}{4}S^5(s_f) & -\frac{1}{8}S^6(s_f) & -\frac{1}{12}S^7(s_f) & -\frac{1}{16}S^8(s_f) & -\frac{1}{20}S^9(s_f) & -\frac{1}{24}S^{10}(s_f) & \frac{1}{4}s_f^4 c\theta_f \\ -\frac{1}{5}S^6(s_f) & -\frac{1}{10}S^7(s_f) & -\frac{1}{15}S^8(s_f) & -\frac{1}{20}S^9(s_f) & -\frac{1}{25}S^{10}(s_f) & -\frac{1}{30}S^{11}(s_f) & \frac{1}{5}s_f^5 c\theta_f \\ -\frac{1}{6}S^7(s_f) & -\frac{1}{12}S^8(s_f) & -\frac{1}{18}S^9(s_f) & -\frac{1}{24}S^{10}(s_f) & -\frac{1}{30}S^{11}(s_f) & -\frac{1}{36}S^{12}(s_f) & \frac{1}{6}s_f^6 c\theta_f \\ s_fc\theta_f & \frac{1}{2}s_f^2 c\theta_f & \frac{1}{3}s_f^3 c\theta_f & \frac{1}{4}s_f^4 c\theta_f & \frac{1}{5}s_f^5 c\theta_f & \frac{1}{6}s_f^6 c\theta_f & \kappa_f c\theta_f \end{bmatrix}\notag \\ &+\lambda_2\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & s_f \\ 0 & 0 & 0 & 0 & 0 & 0 & s_f^2 \\ 0 & 0 & 0 & 0 & 0 & 0 & s_f^3 \\ 0 & 0 & 0 & 0 & 0 & 0 & s_f^4 \\ 0 & 0 & 0 & 0 & 0 & 0 & s_f^5 \\ 1 & s_f & s_f^2 & s_f^3 & s_f^4 & s_f^5 & \kappa_f' \end{bmatrix}\notag \\ . \end{align} H7x7.=δq2δ2J(q)+δq2δ2(λTg(q))=δq2δ2J(q)+λ0δq2δ2x(sf)+λ1δq2δ2y(sf)+λ2δq2δ2θ(sf)=sf2sf23sf34sf45sf56sf6κf2sf23sf34sf45sf56sf67sf7sfκf3sf34sf45sf56sf67sf78sf8sf2κf4sf45sf56sf67sf78sf89sf9sf3κf5sf56sf67sf78sf89sf910sf10sf4κf6sf67sf78sf89sf910sf1011sf11sf5κfκfsfκfsf2κfsf3κfsf4κfsf5κfkfkf+λ0C2(sf)21C3(sf)31C4(sf)41C5(sf)51C6(sf)61C7(sf)sfsθf21C3(sf)41C4(sf)61C5(sf)81C6(sf)101C7(sf)121C8(sf)21sf2sθf31C4(sf)61C5(sf)91C6(sf)121C7(sf)151C8(sf)181C9(sf)31sf3sθf41C5(sf)81C6(sf)121C7(sf)161C8(sf)201C9(sf)241C10(sf)41sf4sθf51C6(sf)101C7(sf)151C8(sf)201C9(sf)251C10(sf)301C11(sf)51sf5sθf61C7(sf)121C8(sf)181C9(sf)241C10(sf)301C11(sf)361C12(sf)61sf6sθfsfsθf21sf2sθf31sf3sθf41sf4sθf51sf5sθf61sf6sθfκfsθf+λ1S2(sf)21S3(sf)31S4(sf)41S5(sf)51S6(sf)61S7(sf)sfcθf21S3(sf)41S4(sf)61S5(sf)81S6(sf)101S7(sf)121S8(sf)21sf2cθf31S4(sf)61S5(sf)91S6(sf)121S7(sf)151S8(sf)181S9(sf)31sf3cθf41S5(sf)81S6(sf)121S7(sf)161S8(sf)201S9(sf)241S10(sf)41sf4cθf51S6(sf)101S7(sf)151S8(sf)201S9(sf)251S10(sf)301S11(sf)51sf5cθf61S7(sf)121S8(sf)181S9(sf)241S10(sf)301S11(sf)361S12(sf)61sf6cθfsfcθf21sf2cθf31sf3cθf41sf4cθf51sf5cθf61sf6cθfκfcθf+λ20000001000000sf000000sf2000000sf3000000sf4000000sf51sfsf2sf3sf4sf5κf

H3x7=δδqg(q)=[δx(sf)δqδy(sf)δqδθ(sf)δq]=[−S1(sf)−12S2(sf)−13S3(sf)−14S4(sf)−15S5(sf)−16S6(sf)cθfC1(sf)12C2(sf)13C3(sf)14C4(sf)15C5(sf)16C6(sf)sθfsfsf22sf33sf44sf55sf66κf] \begin{align} \bf{H}_{3x7} &= \frac{\delta}{\delta \bf{q}} \bf{g}(\bf{q}) \notag \\ &=\begin{bmatrix} \frac{\delta x(s_f)}{\delta \bf{q}} \\ \frac{\delta y(s_f)}{\delta \bf{q}} \\ \frac{\delta \theta(s_f)}{\delta \bf{q}} \end{bmatrix} \notag \\ &= \begin{bmatrix} -S^1(s_f) & -\frac{1}{2}S^2(s_f) & -\frac{1}{3}S^3(s_f) & -\frac{1}{4}S^4(s_f) & -\frac{1}{5}S^5(s_f) & -\frac{1}{6}S^6(s_f) & c\theta_f \\ C^1(s_f) & \frac{1}{2}C^2(s_f) & \frac{1}{3}C^3(s_f) & \frac{1}{4}C^4(s_f) & \frac{1}{5}C^5(s_f) & \frac{1}{6}C^6(s_f) & s\theta_f \\ s_f & \frac{s_f^2}{2} & \frac{s_f^3}{3} & \frac{s_f^4}{4} & \frac{s_f^5}{5} & \frac{s_f^6}{6} & \kappa_f \end{bmatrix} \notag \end{align} H3x7=δqδg(q)=δqδx(sf)δqδy(sf)δqδθ(sf)=S1(sf)C1(sf)sf21S2(sf)21C2(sf)2sf231S3(sf)31C3(sf)3sf341S4(sf)41C4(sf)4sf451S5(sf)51C5(sf)5sf561S6(sf)61C6(sf)6sf6cθfsθfκf

JT=[(δδqH(q,λ))Tg(q)]=[(δJ(q)δq+δλTg(q)δq)Tg(q)]=[K0(sf)K1(sf)K2(sf)K3(sf)K4(sf)K5(sf)12kf2x(sf)−xfy(sf)−yfθ(sf)−θf]+[H3x7Tλ03x1] \begin{align} \bf{J}^T &= \begin{bmatrix} \bigg(\frac{\delta}{\delta \bf{q}}\bf{H}(\bf{q},\bf{\lambda})\bigg)^T \\ \bf{g}(\bf{q}) \end{bmatrix} \notag \\ &= \begin{bmatrix} \bigg( \frac{\delta \bf{J}(q)}{\delta\bf{q}} + \frac{\delta \bf{\lambda}^T\bf{g}(\bf{q})}{\delta \bf{q}} \bigg)^T \\ \bf{g}(\bf{q}) \end{bmatrix} \notag \\ &= \begin{bmatrix} K^0(s_f) \\ K^1(s_f) \\ K^2(s_f) \\ K^3(s_f) \\ K^4(s_f) \\ K^5(s_f) \\ \frac{1}{2}k_f^2 \\ x(s_f) - x_f \\ y(s_f) - y_f \\ \theta(s_f) - \theta_f \end{bmatrix} + \begin{bmatrix} \bf{H}_{3x7}^T\bf{\lambda} \\ \bf{0}_{3x1} \end{bmatrix} \end{align} JT=(δqδH(q,λ))Tg(q)=(δqδJ(q)+δqδλTg(q))Tg(q)=K0(sf)K1(sf)K2(sf)K3(sf)K4(sf)K5(sf)21kf2x(sf)xfy(sf)yfθ(sf)θf+[H3x7Tλ03x1]

其中:
kf=a0+a1sf+a2sf2+a3sf3+a4sf4+a5sf5 \begin{align} k_f = a_0 + a_1s_f + a_2s_f^2 + a_3s_f^3 + a_4s_f^4 + a_5s_f^5 \end{align} kf=a0+a1sf+a2sf2+a3sf3+a4sf4+a5sf5
kf′=a1+2a2sf+3a3sf2+4a4sf3+5a5sf4 \begin{align} k_f' = a_1 + 2a_2s_f + 3a_3s_f^2 + 4a_4s_f^3 + 5a_5s_f^4 \end{align} kf=a1+2a2sf+3a3sf2+4a4sf3+5a5sf4
sθf=sin(θ(sf)),cθf=cos(θ(sf)) \begin{align} s\theta_f = sin(\theta(s_f)),c\theta_f = cos(\theta(s_f)) \end{align} sθf=sin(θ(sf)),cθf=cos(θ(sf))

[0,sf][0, s_f][0,sf]分成m等分,m为偶数,定义:
w={wk}=[1424...4241]T \begin{align} \bf{w} = \{w_k\} = \begin{bmatrix} 1 & 4 & 2 & 4 &...&4 & 2 & 4 & 1 \end{bmatrix}^T \end{align} w={wk}=[1424...4241]T

Cn(sf)=(Δs3)∑k=0mwkskncos(θ(sk))withsk=kΔs \begin{align} C^n(s_f) = \bigg( \frac{\Delta s}{3}\bigg)\sum_{k=0}^m w_k s_k^n cos(\theta(s_k)) \quad with \quad s_k = k\Delta s \end{align} Cn(sf)=(3Δs)k=0mwkskncos(θ(sk))withsk=kΔs
Sn(sf)=(Δs3)∑k=0mwksknsin(θ(sk))withsk=kΔs \begin{align} S^n(s_f) = \bigg( \frac{\Delta s}{3}\bigg)\sum_{k=0}^m w_k s_k^n sin(\theta(s_k)) \quad with \quad s_k = k\Delta s \end{align} Sn(sf)=(3Δs)k=0mwksknsin(θ(sk))withsk=kΔs

x(sf)=(Δs3)∑k=0mwkcos(θ(sk))withsk=kΔs \begin{align} x(s_f) &= \bigg(\frac{\Delta s}{3} \bigg) \sum_{k=0}^mw_k cos(\theta(s_k)) \quad with \quad s_k = k\Delta s \end{align} x(sf)=(3Δs)k=0mwkcos(θ(sk))withsk=kΔs

y(sf)=(Δs3)∑k=0mwksin(θ(sk))withsk=kΔs \begin{align} y(s_f) &= \bigg(\frac{\Delta s}{3} \bigg) \sum_{k=0}^mw_k sin(\theta(s_k)) \quad with \quad s_k = k\Delta s \end{align} y(sf)=(3Δs)k=0mwksin(θ(sk))withsk=kΔs

Kn(s)=a0sn+1n+1+a1sn+2n+2+a2sn+3n+3+a3sn+4n+4+a4sn+5n+5+a5sn+6n+6 \begin{align} \bf{K}^n(s) = a_0 \frac{s^{n+1}}{n+1} + a_1\frac{s^{n+2}}{n+2} + a_2\frac{s^{n+3}}{n+3} + a_3\frac{s^{n+4}}{n+4} + a_4\frac{s^{n+5}}{n+5} + a_5\frac{s^{n+6}}{n+6} \end{align} Kn(s)=a0n+1sn+1+a1n+2sn+2+a2n+3sn+3+a3n+4sn+4+a4n+5sn+5+a5n+6sn+6

待续…

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值