自动驾驶之轨迹规划7——A Real-Time Motion Planner with Trajectory Optimization for Autonomous Vehicles文献阅读

本文介绍了一种实时运动规划器,它结合路径和速度优化来为自动驾驶车辆生成最优轨迹。首先通过离散化空间和代价函数寻找初始轨迹,然后采用‘后优化’策略减少52%的规划时间。路径生成使用四次曲率多项式以确保连续性,而速度生成则通过离散化速度空间和多项式曲线实现。成本函数集用于评估轨迹的多个方面,包括安全、舒适性和效率。最后,文章提出了路径和速度的优化方法,利用单纯形算法改进路径质量。然而,这种方法可能需要额外的碰撞检测以确保安全性。

概述

最近找了一些EM Motion Planner相关的参考文献阅读了一下以便深刻理解。本篇为:A Real-Time Motion Planner with Trajectory Optimization for Autonomous Vehicles

Abstract

规划器首先把规划空间离散化,并根据一组代价函数搜索最优轨迹,然后对轨迹的path和speed进行迭代优化。文中提出了一种“post-optimization”的方法,可以弥补离散化难以求出最优解的问题(离散越密,越接近最优解),并可以减少52%的规划时间。

Introduction

文中举了一些前人的工作,基本都是用多项式(curvature polynomials or quintic polynomials)+frenet farame(这里的reference line是车道中心线,后面会在文献《Optimal trajectory generation for dynamic street scenarios in a frenet frame》中详细说)生成path或trajectory的,但会存在一些不足:加速度不连续或计算量过大,(注意,此时的trajectory是粗略解)。

下面为本文算法的架构图:由trajectory planning(trajectory generation + cost function)和轨迹优化(trajectory optimization)两部分组成:首先参考《Reactive nonholonomic trajectory generation via parametric optimal control》生成path和speed,然后用cost function求最优trajectory。最后会用《GNU Scientific Library Reference Manual》(a collection of numerical routines for scientific computing)中的方法对该trajectory的path和speed进行迭代优化。
在这里插入图片描述

ALGORITHM FRAMEWORK - Trajectory generation

path和speed分别生成。然后结合path和speed,得到一个trajectory。

Path generation
通过《Motion Planning for Autonomous Driving with a Conformal Spatiotemporal Lattice》中的方法进行采样:先定义采样点ppp的状态空间为:[xp(l,d)x_p(l,d)xp(l,d)yp(l,d)y_p(l,d)yp(l,d)θp(l,d)\theta_p(l,d)θp(l,d)kp(l

ICRA12_A Real-Time Motion Planner with Trajectory Optimization for Autonomous Vehicles.pdf IEEE_CASE2014_Design of Lane Keeping System Using Adaptive Model Predictive Control.pdf IEEE_CDC2012_Werling_AutomaticCollisionAvoidanceUsingModel-predictiveOnlineOptimization.pdf IEEE_ICRA2010_werling-optimal-trajectory-generation-for-dynamic-street-scenarios-in-a-frenet-frame.pdf IEEE_IROS2016_Snider_Automated Tactical Maneuver Discovery, Reasoning and Trajectory Planning for Automated Driving.pdf IEEE_ITSC2005_A new approach to lane guidance systems.pdf IEEE_ITSC2011_Algebraic nonlinear estimation and flatness-based lat lon conrol or automotive vehicles.pdf IEEE_ITSC2011_The H2-Optimal Preview Controller for a Shared Lateral Control.pdf IEEE_ITSC2013_Linear Model Predictive Control for Lane Keeping and Obstacle Avoidance on Low Curvature Roads.pdf IEEE_ITSC2016_Optimal Trajectory Planning for Autonomous Driving Integrating Logical Constraints_An MIQP Perspective.pdf IEEE_IV2010_Safety Verification of Autonomous Vehicles for Coordinated Evasive Maneuvers.pdf IEEE_IV2012_Learning Lane Change Trajectories From On-road Driving Data.pdf IEEE_IV2013_Higher_Order_Sliding_Mode_Control_for_Lateral_Dynamics_V0.pdf IEEE_IV2013_Robust Predictive Control for Semi-Autonomous Vehicles with an certain drivier model.pdf IEEE_IV2013_Snider_Focused Trajectory Planning for Autonomous On-Road Driving.pdf IEEE_TransHMS2017_Modeling, Identification, and Predictive Control of a Driver Steering Assistance System.pdf IEEE_TransSMC_2009Combined Automatic Lane-Keeping and Driver's Steering Through a 2-DOF Control Strategy.pdf" IEEE-TransIE2014_A real time energy optimal trajectory generation method for a servomotor system.pdf IEEE-TransITS2014_Ziegler_Making Bertha Drive-An Autonomous Journey on a Historic Route.pdf IJRR_Journal_2012_Werling_Optimal-trajectories-for-time-critical-street-scenarios-using-discretized-terminal-manifolds.pdf IROS_2015_Tunable and Stable Real-Time Trajectory Planning for Urban Autonomous Driving.pdf AI Model for Behaviour Arbitration.pdf Automatic_Steering_Methods_for_Autonomous_Automobile_Path_Tracking.pdf AVEC_2015_Lane Keeping Assistance with Learning-Based Driver Model and Model Predictive Control.pdf hoffmann_stanley_control07.pdf IAS_2014_On-Road Trajectory Planning for General Autonomous Driving with Enhanced Tunability.pdf ICINCO_2017_Time-Energy Optimal Trajectory Planning over a Fixed Path for a Wheel Mobile Robot.pdf ICIRA2012_On-Road Motion Planning for autonomous driving.pdf ICRA_2011_Energy-Optimal Velocity Profiles for Car-Like Robots.pdf
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值