相关说明
(1) 通过解析式法进行对准,模型如下:
[
g
e
g
e
×
ω
i
e
e
g
e
×
ω
i
e
e
×
g
e
]
=
C
b
e
[
−
f
i
b
b
−
f
i
b
b
×
ω
i
e
e
f
i
b
b
×
ω
i
e
e
×
g
e
]
\begin{bmatrix} g^e \\ \\ g^e × \omega_{ie}^e \\ \\ g^e × \omega_{ie}^e × g^e \end{bmatrix} = C_b^e \begin{bmatrix} -f_{ib}^b \\ \\ -f_{ib}^b × \omega_{ie}^e \\ \\ f_{ib}^b × \omega_{ie}^e × g^e \end{bmatrix}
⎣⎢⎢⎢⎢⎡gege×ωieege×ωiee×ge⎦⎥⎥⎥⎥⎤=Cbe⎣⎢⎢⎢⎢⎡−fibb−fibb×ωieefibb×ωiee×ge⎦⎥⎥⎥⎥⎤
(2) 解算过程中依据以下内容进行更新,并根据实时位置获取大地坐标,求取
C
b
l
C_b^l
Cbl,提取姿态角;
(3)
l
l
l 为当地水平坐标系,指向东北天方向,并且定义坐标系正向转动产生的姿态角为正;
(4) 首先通过spp解算出坐标,再进行松组合;
(5) 每一次量测更新后,皆进行误差补偿,并改正零偏;
(6) QRP等矩阵设置不规范将导致“平台”失准角出现较大误差。
一、姿态更新与误差方程
1、姿态更新
对于姿态微分方程:
C ˙ b e = C b e ∗ Ω e b b \dot C_b^e = C_b^e * \Omega_{eb}^b C˙be=Cbe∗Ωebb
其中 Ω e b b \Omega_{eb}^b Ωebb为角速度矢量 ω e b b \omega_{eb}^b ωebb的反对称矩阵,其求解方法:
ω e b b = ω i b b − C e b ω i e e \omega_{eb}^b = \omega_{ib}^b - C_e^b \omega_{ie}^e ωebb=ωibb−Cebωiee
对(1)进行求解:
C b e ( + ) = C b e ( − ) e x p ( ∫ − + Ω e b b d t ) C_b^e(+) = C_b^e(-) exp( \int _-^+ \Omega_{eb}^b dt) Cbe(+)=Cbe(−)exp(∫−+Ωebbdt)
其中,
−
-
−表示前一时刻,
+
+
+表示当前时刻。
积分区间较小,可用等效旋转矢量代替:
∫ − + Ω e b b d t = σ e b b × \int _-^+ \Omega_{eb}^b dt = \sigma_{eb}^b × ∫−+Ωebbdt=σebb×
其中 σ e b b = [ σ x , σ y , σ z ] \sigma_{eb}^b=[\sigma_x,\sigma_y,\sigma_z] σebb=[σx,σy,σz],那么:
C b e ( + ) = C b e ( − ) e x p ( σ e b b × ) C_b^e(+) = C_b^e(-) exp( \sigma_{eb}^b × ) Cbe(+)=Cbe(−)exp(σebb×)
下面求解 e x p ( σ e b b × ) exp( \sigma_{eb}^b × ) exp(σebb×),首先展开:
e x p ( σ × ) = I + ( σ × ) + ( σ × ) 2 2 ! + ( σ × ) 3 3 ! + ( σ × ) 4 4 ! + ( σ × ) 5 5 ! + ( σ × ) 6 6 ! + . . . exp(\sigma ×)=I+(\sigma ×)+\frac{(\sigma ×)^2}{2!}+\frac{(\sigma ×)^3}{3!} +\frac{(\sigma ×)^4}{4!}+\frac{(\sigma ×)^5}{5!}+\frac{(\sigma ×)^6}{6!}+... exp(σ×)=I+(σ×)+2!(σ×)2+3!(σ×)3+4!(σ×)4+5!(σ×)5+6!(σ×)6+...
并有:
( σ × ) 2 = [ − ( σ y 2 + σ z 2 ) σ x σ y σ x σ z σ x σ y − ( σ x 2 + σ z 2 ) σ y σ z σ x σ z σ y σ z − ( σ x 2 + σ y 2 ) ] (\sigma ×)^2=\begin{bmatrix} -(\sigma_y^2+\sigma_z^2) & \sigma_x \sigma_y & \sigma_x \sigma_z \\ \\ \sigma_x \sigma_y & -(\sigma_x^2+\sigma_z^2) & \sigma_y \sigma_z\\ \\ \sigma_x \sigma_z & \sigma_y \sigma_z & -(\sigma_x^2+\sigma_y^2) \end{bmatrix} (σ×)2=⎣⎢⎢⎢⎢⎡−(σy2+σz2)σxσyσxσzσxσy−(σx2+σz2)σyσzσxσzσyσz−(σx2+σy2)⎦⎥⎥⎥⎥⎤
( σ × ) 3 = − σ 2 ( σ × ) , ( σ × ) 4 = − σ 2 ( σ × ) 2 , ( σ × ) 5 = σ 4 ( σ × ) , ( σ × ) 6 = σ 4 ( σ × ) 2 , . . . \begin{matrix} (\sigma ×)^3=-\sigma^2(\sigma ×), & (\sigma ×)^4=-\sigma^2(\sigma ×)^2, \\ (\sigma ×)^5=\sigma^4(\sigma ×), & (\sigma ×)^6=\sigma^4(\sigma ×)^2, ...\\ \end{matrix} (σ×)3=−σ2(σ×),(σ×)5=σ4(σ×),(σ×)4=−σ2(σ×)2,(σ×)6=σ4(σ×)2,...
可得:
e x p ( σ × ) = I + ( σ × ) + ( σ × ) 2 2 ! + ( σ × ) 3 3 ! + ( σ × ) 4 4 ! + ( σ × ) 5 5 ! + ( σ × ) 6 6 ! . . . = I + ( σ × ) + ( σ × ) 2 2 ! − σ 2 ( σ × ) 3 ! − σ 2 ( σ × ) 2 4 ! + σ 4 ( σ × ) 5 ! + σ 4 ( σ × ) 2 6 ! . . . = I + ( 1 − σ 2 3 ! + σ 4 5 ! − . . . ) ( σ × ) + ( 1 2 ! − σ 2 4 ! + σ 4 6 ! − . . . ) ( σ × ) 2 = I + s i n σ σ ( σ × ) + 1 − c o s σ σ 2 ( σ × ) 2 \begin{aligned} exp(\sigma ×) &= I+(\sigma ×)+\frac{(\sigma ×)^2}{2!}+\frac{(\sigma ×)^3}{3!} +\frac{(\sigma ×)^4}{4!}+\frac{(\sigma ×)^5}{5!}+\frac{(\sigma ×)^6}{6!}... \\ &= I+(\sigma ×)+\frac{(\sigma ×)^2}{2!}-\frac{\sigma^2(\sigma ×)}{3!} -\frac{\sigma^2(\sigma ×)^2}{4!}+\frac{\sigma^4(\sigma ×)}{5!}+\frac{\sigma^4(\sigma ×)^2}{6!}... \\ &= I + (1-\frac{\sigma^2}{3!}+\frac{\sigma^4}{5!}-...)(\sigma ×) +(\frac{1}{2!}-\frac{\sigma^2}{4!}+\frac{\sigma^4}{6!}-...)(\sigma ×)^2 \\ &= I+\frac{sin \sigma}{\sigma}(\sigma ×)+\frac{1-cos\sigma}{\sigma^2}(\sigma ×)^2 \end{aligned} exp(σ×)=I+(σ×)+2!(σ×)2+3!(σ×)3+4!(σ×)4+5!(σ×)5+6!(σ×)6...=I+(σ×)+2!(σ×)2−3!σ2(σ×)−4!σ2(σ×)2+5!σ4(σ×)+6!σ4(σ×)2...=I+(1−3!σ2+5!σ4−...)(σ×)+(2!1−4!σ2+6!σ4−...)(σ×)2=I+σsinσ(σ×)+σ21−cosσ(σ×)2
故:
C b e ( + ) = C b e ( − ) [ I + s i n σ σ ( σ × ) + 1 − c o s σ σ 2 ( σ × ) 2 ] C_b^e(+) = C_b^e(-)[I+\frac{sin \sigma}{\sigma}(\sigma ×)+\frac{1-cos\sigma}{\sigma^2}(\sigma ×)^2 ] Cbe(+)=Cbe(−)[I+σsinσ(σ×)+σ21−cosσ(σ×)2]
2、姿态误差方程
载体真实姿态:
C
b
e
C_b^e
Cbe,载体通过INS推算得到的姿态
C
~
b
e
\tilde C_b^e
C~be,定义:
C
~
b
e
=
(
I
−
Φ
)
C
b
e
\tilde C_b^e = (I-\Phi) C_b^e
C~be=(I−Φ)Cbe
可推得:
(1) C ~ b e C b e T = I − Φ \tag{1} \tilde C_b^e {C_b^e}^T = I - \Phi C~beCbeT=I−Φ(1)
(2) C ~ b e = C b e − Φ C b e \tag{2} {\tilde C_b^e} = {C_b^e} - \Phi {C_b^e} C~be=Cbe−ΦCbe(2)
其中,
Φ
\Phi
Φ为姿态失准角
φ
e
\varphi ^e
φe构成的斜对称矩阵。易得:
Φ
=
I
−
C
b
e
~
C
b
e
T
\Phi = I - {\tilde {C_b^e}} {C_b^e}^T
Φ=I−Cbe~CbeT
T T T表转置,求导:
Φ ˙ = − C ~ b e ˙ C b e T − C b e ~ C ˙ b e T \dot \Phi = -\dot{\tilde C_b^e} {{C_b^e}}^T - {\tilde {C_b^e}} {\dot C_b^e}^T Φ˙=−C~be˙CbeT−Cbe~C˙beT
又有反对称阵的相似变换矩阵:
Ω i e e = C b e Ω i e b C e b \Omega_{ie}^e = C_b^e \Omega_{ie}^b C_e^b Ωiee=CbeΩiebCeb
可得:
Ω i e e C b e = C b e Ω i e b \Omega_{ie}^e C_b^e= C_b^e \Omega_{ie}^b ΩieeCbe=CbeΩieb
根据上式,对于姿态微分方程可得:
(3) C ˙ b e = C b e ∗ Ω e b b = C b e ( Ω i b b − Ω i e b ) = C b e ∗ Ω i b b − Ω i e e ∗ C b e \tag{3} \begin{aligned} \dot C_b^e &= C_b^e * \Omega_{eb}^b = C_b^e (\Omega_{ib}^b -\Omega_{ie}^b) \\ &= C_b^e * \Omega_{ib}^b - \Omega_{ie}^e * C_b^e \end{aligned} C˙be=Cbe∗Ωebb=Cbe(Ωibb−Ωieb)=Cbe∗Ωibb−Ωiee∗Cbe(3)
同时也有:
(4) C b e ~ ˙ = C ~ b e ∗ Ω ~ i b b − Ω ~ i e e ∗ C ~ b e \tag{4} \dot {\tilde{C_b^e} } = \tilde C_b^e * \tilde \Omega_{ib}^b - \tilde \Omega_{ie}^e * \tilde C_b^e Cbe~˙=C~be∗Ω~ibb−Ω~iee∗C~be(4)
顾及(3)(4),此时可得姿态误差方程:
Φ ˙ = − ( C ~ b e Ω ~ i b b − Ω ~ i e e C ~ b e ) C b e T − C ~ b e ( C b e Ω i b b − Ω i e e C b e ) T \dot \Phi = -(\tilde C_b^e \tilde \Omega_{ib}^b - \tilde \Omega_{ie}^e \tilde C_b^e) {{C_b^e}}^T - \tilde C_b^e (C_b^e \Omega_{ib}^b - \Omega_{ie}^e C_b^e)^T Φ˙=−(C~beΩ~ibb−Ω~ieeC~be)CbeT−C~be(CbeΩibb−ΩieeCbe)T
定义:陀螺加计的输出
ω i b b = ω ~ i b b − δ ω i b b f i b b = f ~ i b b − δ f i b b \begin{aligned} \omega_{ib}^b &= \tilde \omega_{ib}^b-\delta \omega_{ib}^b \\ f_{ib}^b &= \tilde f_{ib}^b-\delta f_{ib}^b \end{aligned} ωibbfibb=ω~ibb−δωibb=f~ibb−δfibb
所以有:
(5) Ω ~ i b b = Ω i b b + δ Ω i b b \tag{5} \tilde \Omega_{ib}^b = \Omega_{ib}^b + \delta \Omega_{ib}^b Ω~ibb=Ωibb+δΩibb(5)
顾及(1)(2)(5),忽略地球自转角速度的误差及二阶误差项,得:
Φ ˙ = − C ~ b e Ω ~ i b b C b e T + Ω ~ i e e C ~ b e C b e T + C ~ b e Ω i b b C b e T − C ~ b e C b e T Ω i e e ≈ − ( I − Φ ) C b e ( Ω i b b + δ Ω i b b ) C b e T + Ω i e e ( I − Φ ) C b e C b e T + ( I − Φ ) C b e Ω i b b C b e T − ( I − Φ ) C b e C b e T Ω i e e = − ( I − Φ ) C b e ( Ω i b b + δ Ω i b b ) C b e T + Ω i e e ( I − Φ ) + ( I − Φ ) C b e Ω i b b C b e T − ( I − Φ ) Ω i e e = − C b e Ω i b b C b e T − C b e δ Ω i b b C b e T + Φ C b e Ω i b b C b e T + Φ C b e δ Ω i b b C b e T + Ω i e e − Ω i e e Φ + C b e Ω i b b C b e T − Φ C b e Ω i b b C b e T − Ω i e e + Φ Ω i e e ≈ − C b e δ Ω i b b C b e T − Ω i e e Φ + Φ Ω i e e = − ( Ω i e e Φ − Φ Ω i e e ) − C b e δ Ω i b b C b e T \begin{aligned} \dot \Phi &= -\tilde C_b^e \tilde \Omega_{ib}^b {{C_b^e}}^T + \tilde \Omega_{ie}^e \tilde C_b^e {{C_b^e}}^T + \tilde C_b^e \Omega_{ib}^b {C_b^e}^T - \tilde C_b^e {C_b^e}^T \Omega_{ie}^e \\ &\approx -(I-\Phi) C_b^e (\Omega_{ib}^b + \delta \Omega_{ib}^b) {{C_b^e}}^T +\Omega_{ie}^e (I-\Phi) C_b^e {{C_b^e}}^T +(I-\Phi) C_b^e \Omega_{ib}^b {{C_b^e}}^T - (I-\Phi) C_b^e {{C_b^e}}^T \Omega_{ie}^e \\ &= -(I-\Phi) C_b^e (\Omega_{ib}^b + \delta \Omega_{ib}^b) {{C_b^e}}^T+\Omega_{ie}^e (I-\Phi) +(I-\Phi) C_b^e \Omega_{ib}^b {{C_b^e}}^T - (I-\Phi) \Omega_{ie}^e \\ &= -{C_b^e} \Omega_{ib}^b {{C_b^e}}^T - {C_b^e} \delta\Omega_{ib}^b {{C_b^e}}^T + \Phi{C_b^e} \Omega_{ib}^b {{C_b^e}}^T + \Phi{C_b^e} \delta\Omega_{ib}^b {{C_b^e}}^T + \Omega_{ie}^e - \Omega_{ie}^e\Phi \\ &+ {C_b^e} \Omega_{ib}^b {{C_b^e}}^T - \Phi{C_b^e} \Omega_{ib}^b {{C_b^e}}^T - \Omega_{ie}^e + \Phi\Omega_{ie}^e \\ &\approx - {C_b^e} \delta\Omega_{ib}^b {{C_b^e}}^T - \Omega_{ie}^e\Phi + \Phi\Omega_{ie}^e \\ &= - (\Omega_{ie}^e\Phi - \Phi\Omega_{ie}^e) - {C_b^e} \delta\Omega_{ib}^b {{C_b^e}}^T \\ \end{aligned} Φ˙=−C~beΩ~ibbCbeT+Ω~ieeC~beCbeT+C~beΩibbCbeT−C~beCbeTΩiee≈−(I−Φ)Cbe(Ωibb+δΩibb)CbeT+Ωiee(I−Φ)CbeCbeT+(I−Φ)CbeΩibbCbeT−(I−Φ)CbeCbeTΩiee=−(I−Φ)Cbe(Ωibb+δΩibb)CbeT+Ωiee(I−Φ)+(I−Φ)CbeΩibbCbeT−(I−Φ)Ωiee=−CbeΩibbCbeT−CbeδΩibbCbeT+ΦCbeΩibbCbeT+ΦCbeδΩibbCbeT+Ωiee−ΩieeΦ+CbeΩibbCbeT−ΦCbeΩibbCbeT−Ωiee+ΦΩiee≈−CbeδΩibbCbeT−ΩieeΦ+ΦΩiee=−(ΩieeΦ−ΦΩiee)−CbeδΩibbCbeT
即:
φ ˙ e = − Ω i e e φ e − C b e δ ω i b b \dot \varphi^e = -\Omega_{ie}^e \varphi^e - C_b^e \delta \omega_{ib}^b φ˙e=−Ωieeφe−Cbeδωibb
二、速度更新与误差方程
1、速度更新
速度微分方程:
v
˙
e
=
f
i
b
e
−
2
Ω
i
e
e
v
e
+
g
e
\dot v^e = f_{ib}^e - 2\Omega_{ie}^e v^e + g^e
v˙e=fibe−2Ωieeve+ge
对于比力:
f i b e ( + ) ≈ 1 2 [ C b e ( − ) + C b e ( + ) ] ∗ f i b b ( + ) f_{ib}^e(+) \approx \frac{1}{2} [C_b^e(-)+C_b^e(+)] * f_{ib}^b(+) fibe(+)≈21[Cbe(−)+Cbe(+)]∗fibb(+)
可得速度更新:
v
e
≈
v
e
(
−
)
+
[
f
i
b
e
(
+
)
−
2
Ω
i
e
e
v
e
(
−
)
+
g
e
(
−
)
]
∗
Δ
t
v^e \approx v^e(-) + [f_{ib}^e(+)-2\Omega_{ie}^e v^e(-) +g^e(-)]*\Delta t
ve≈ve(−)+[fibe(+)−2Ωieeve(−)+ge(−)]∗Δt
2、速度误差方程
定义:
δ
v
e
=
v
~
e
−
v
e
\delta v^e = \tilde v^e - v^e
δve=v~e−ve
忽略重力及地球自转角速度误差,可得:
δ v ˙ e = v ~ e ˙ − v ˙ e = − 2 Ω i e e δ v e + [ ( C b e f i b b ) × ] ϕ e + C b e δ f i b b \begin{aligned} \delta \dot v^e &= \dot{\tilde v^e} - \dot v^e \\ &= -2\Omega_{ie}^e \delta v^e + [(C_b^e f_{ib}^b)×]\phi ^e + C_b^e \delta f_{ib}^b \end{aligned} δv˙e=v~e˙−v˙e=−2Ωieeδve+[(Cbefibb)×]ϕe+Cbeδfibb
三、位置更新与误差方程
1、位置更新
r e ( + ) = r e ( − ) + 1 2 [ v e ( − ) + v e ( + ) ] Δ t r^e(+) = r^e(-) + \frac{1}{2}[v^e(-) + v^e(+)] \Delta t re(+)=re(−)+21[ve(−)+ve(+)]Δt
2、位置误差方程
δ r ˙ e = δ v e \delta \dot r^e = \delta v^e δr˙e=δve
易知, δ r e = r ~ e − r e \delta r^e = \tilde r^e - r^e δre=r~e−re
四、零偏反馈
前面定义陀螺加计的输出真值
ω
i
b
b
=
ω
~
i
b
b
−
δ
ω
i
b
b
f
i
b
b
=
f
~
i
b
b
−
δ
f
i
b
b
\begin{aligned} \omega_{ib}^b &= \tilde \omega_{ib}^b-\delta \omega_{ib}^b \\ f_{ib}^b &= \tilde f_{ib}^b-\delta f_{ib}^b \end{aligned}
ωibbfibb=ω~ibb−δωibb=f~ibb−δfibb
近似有:
δ ω i b b = d + ε g δ f i b b = b + ε a \begin{aligned} \delta \omega_{ib}^b &= d + \varepsilon_g \\ \delta f_{ib}^b &= b + \varepsilon_a \end{aligned} δωibbδfibb=d+εg=b+εa
五、状态方程
根据以上内容,可得姿态误差方程:
φ
˙
e
=
−
Ω
i
e
e
φ
e
−
C
b
e
δ
ω
i
b
e
=
−
Ω
i
e
e
φ
e
−
C
b
e
d
−
C
b
e
ε
g
\dot \varphi^e = -\Omega_{ie}^e \varphi^e - C_b^e \delta \omega _{ib}^e = -\Omega_{ie}^e \varphi^e - C_b^e d - C_b^e \varepsilon_g
φ˙e=−Ωieeφe−Cbeδωibe=−Ωieeφe−Cbed−Cbeεg
速度误差方程:
δ
v
˙
e
=
−
2
Ω
i
e
e
δ
v
e
+
[
(
C
b
e
f
i
b
b
)
×
]
φ
e
+
C
b
e
δ
f
i
b
b
=
−
2
Ω
i
e
e
δ
v
e
+
[
(
C
b
e
f
i
b
b
)
×
]
φ
e
+
C
b
e
b
+
C
b
e
ε
a
\begin{aligned} \delta \dot v^e &= -2\Omega_{ie}^e \delta v^e + [(C_b^e f_{ib}^b)×]\varphi ^e + C_b^e \delta f_{ib}^b \\ &= -2\Omega_{ie}^e \delta v^e + [(C_b^e f_{ib}^b)×]\varphi ^e + C_b^e b + C_b^e \varepsilon_a \end{aligned}
δv˙e=−2Ωieeδve+[(Cbefibb)×]φe+Cbeδfibb=−2Ωieeδve+[(Cbefibb)×]φe+Cbeb+Cbeεa
故可得线性化后的状态方程为:
[
δ
r
˙
e
δ
v
˙
e
φ
˙
e
d
b
]
=
[
O
I
O
O
O
O
−
2
Ω
i
e
e
[
(
C
b
e
f
i
b
b
)
×
]
O
C
b
e
O
O
−
Ω
i
e
e
−
C
b
e
O
O
O
O
O
O
O
O
O
O
O
]
[
δ
r
e
δ
v
e
φ
e
d
b
]
+
[
O
O
O
C
b
e
−
C
b
e
O
O
O
O
O
]
[
ε
g
ε
a
]
\begin{bmatrix} \delta \dot r^e \\ \\ \delta \dot v^e \\ \\ \dot \varphi^e \\ \\ d \\ \\ b \\ \end{bmatrix} = \begin{bmatrix} O & I & O & O & O \\ \\ O & -2\Omega_{ie}^e & [(C_b^e f_{ib}^b)×] & O & C_b^e \\ \\ O & O & -\Omega_{ie}^e & -C_b^e & O \\ \\ O & O & O & O & O \\ \\ O & O & O & O & O \\ \end{bmatrix} \begin{bmatrix} \delta r^e \\ \\ \delta v^e \\ \\ \varphi^e \\ \\ d \\ \\ b \\ \end{bmatrix} + \begin{bmatrix} O & O \\ \\ O & C_b^e \\ \\ -C_b^e & O \\ \\ O & O \\ \\ O & O\\ \end{bmatrix} \begin{bmatrix} \varepsilon_g \\ \\ \varepsilon_a \\ \end{bmatrix}
⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡δr˙eδv˙eφ˙edb⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡OOOOOI−2ΩieeOOOO[(Cbefibb)×]−ΩieeOOOO−CbeOOOCbeOOO⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡δreδveφedb⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤+⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡OO−CbeOOOCbeOOO⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤⎣⎡εgεa⎦⎤
与单点定位进行组合,其中GPS数据只利用解算得到的点位坐标作为量测值进行更新:
[
r
i
n
s
−
r
g
p
s
]
=
[
I
O
O
O
O
]
[
δ
r
e
δ
v
e
φ
e
d
b
]
+
[
ε
r
]
\begin{bmatrix} r_{ins} - r_{gps} \end{bmatrix} = \begin{bmatrix} I & O & O & O & O \end{bmatrix} \begin{bmatrix} \delta r^e \\ \\ \delta v^e \\ \\ \varphi^e \\ \\ d \\ \\ b \\ \end{bmatrix} + \begin{bmatrix} \varepsilon_r \end{bmatrix}
[rins−rgps]=[IOOOO]⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡δreδveφedb⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤+[εr]
参考:刘帅. 模糊度固定解PPP/INS紧组合理论与方法[D].解放军信息工程大学,2017.点此进入资源页下载