定义:求和记号∑\sum∑:∑k=1nak=a1+a2+⋯+an\sum_{k=1}^{n}{a_k}=a_1+a_2+\cdots+a_nk=1∑nak=a1+a2+⋯+an其中kkk为求和下标(index of summation).
定理:求和的一些性质:∑k=mncak=c∑k=mnak\sum_{k=m}^{n}{ca_k}=c\sum_{k=m}^{n}{a_k}k=m∑ncak=ck=m∑nak ∑k=mnak+bk=∑k=mnak+∑k=mnbk\sum_{k=m}^{n}{a_k + b_k}=\sum_{k=m}^{n}{a_k}+\sum_{k=m}^{n}{b_k}k=m∑nak+bk=k=m∑nak+k=m∑nbk
∑i=mn∑j=pqaibj=(∑i=mnai)(∑j=pqbj)=∑j=pq∑i=mnaibj\sum_{i=m}^{n}\sum_{j=p}^{q}{a_i}{b_j}=\left(\sum_{i=m}^{n}{a_i}\right)\left(\sum_{j=p}^{q}{b_j}\right)=\sum_{j=p}^{q}\sum_{i=m}^{n}{a_ib_j}i=m∑nj=p∑qaibj=(i=m∑nai)(j=p∑qbj)=j=p∑qi=m∑naibj
等比数列a,ar,⋯ ,ark,⋯a,ar,\cdots,ar^k,\cdotsa,ar,⋯,ark,⋯的前n+1n+1n+1项的和S=∑j=0narj={(n+1)ar=1arn+1−ar−1r≠1S=\sum_{j=0}^{n}{ar^j}=\left\{\begin{aligned}\left(n+1\right)a\quad\quad r=1\\\frac{ar^{n+1}-a}{r-1}\quad\quad r\neq1\end{aligned}\right. S=j=0∑narj=⎩⎪⎨⎪⎧(n+1)ar=1r−1arn+1−ar̸=1
定义:求积记号∏\prod∏:∏k=1nak=a1a2⋯an\prod_{k=1}^{n}{a_k}=a_1a_2\cdots a_nk=1∏nak=a1a2⋯an
定义:阶乘函数(factorial function):n!:=∏j=1njn∈N+n!:=\prod_{j=1}^{n}{j}\quad\quad n\in\N^+n!:=j=1∏njn∈N+
约定:0!=10!=10!=1