题目:
求
limx→+∞ex(1+1x)x2\lim_{x\to +\infty}\frac{e^x}{(1+\frac{1}{x})^{x^2}}x→+∞lim(1+x1)x2ex
参考答案:
limx→+∞ex(1+1x)x2=exp( limx→+∞lnex(1+1x)x2)=exp(limx→+∞(x−x2ln(1+1x))\begin{aligned}
\lim_{x\to +\infty}\frac{e^x}{(1+\frac{1}{x})^{x^2}}&=\exp(\ \lim_{x\to+\infty} \ln\frac{e^x}{(1+\frac{1}{x})^{x^2}})\\
&=\exp(\lim_{x\to+\infty}(x-x^2\ln(1+\frac{1}{x}))
\end{aligned}x→+∞lim(1+x1)x2ex=exp( x→+∞limln(1+x1)x2ex)=exp(x→+∞lim(x−x2ln(1+x1))
令 :
t=1xt=\frac{1}{x}t=x1
那么:
limx→+∞(x−x2ln(1+1x)=limt→0+t−ln(1+t)t2=limx→0+1−11+t2t=limx→0+t(1+t)(2t)=limx→0+12(1+t)=12\begin{aligned} \lim_{x\to+\infty}(x-x^2\ln(1+\frac{1}{x})&=\lim_{t\to 0^+}\frac{t-\ln(1+t)}{t^2}\\ &=\lim_{x\to 0^+}\frac{1-\frac{1}{1+t}}{2t}\\ &=\lim_{x\to 0^+}\frac{t}{(1+t)(2t)}\\ &=\lim_{x\to 0^+}\frac{1}{2(1+t)}\\ &=\frac{1}{2} \end{aligned}x→+∞lim(x−x2ln(1+x1)=t→0+limt2t−ln(1+t)=x→0+lim2t1−1+t1=x→0+lim(1+t)(2t)t=x→0+lim2(1+t)1=21
所以
exp(limx→+∞(x−x2ln(1+1x))=exp(1/2)=e\exp(\lim_{x\to+\infty}(x-x^2\ln(1+\frac{1}{x}))=\exp(1/2)=\sqrt{e}exp(x→+∞lim(x−x2ln(1+x1))=exp(1/2)=e
2021年1月5日17:27:02
本文详细解析了一道高等数学中的极限题目,通过变换和泰勒展开等技巧,逐步推导出最终答案为根号e。文章适合对极限求解感兴趣的学习者。
1229

被折叠的 条评论
为什么被折叠?



