题目:
试确定 a,ba,ba,b 的值,使
f(x)={ln(1+ax3)1+tanx−1+sinxx<0bx=01xln1−x+x21+x+x2x>0
f(x)=\left\{\begin{array}{cl}
\frac{\ln \left(1+a x^{3}\right)}{\sqrt{1+\tan x}-\sqrt{1+\sin x}} & x<0 \\
b & x=0 \\
\frac{1}{x} \ln \frac{1-x+x^{2}}{1+x+x^{2}} & x>0
\end{array}\right.
f(x)=⎩⎪⎨⎪⎧1+tanx−1+sinxln(1+ax3)bx1ln1+x+x21−x+x2x<0x=0x>0
在 x=0x=0x=0 处连续
参考答案:
根据极限的定义
函数 f(x)f(x)f(x) 在 x=0x=0x=0 点处连续 等价于 f(0−)=f(0)=f(0+)f(0^-)=f(0)=f(0^+)f(0−)=f(0)=f(0+)
而
f(0+)=limx→0+1xln1−x+x21+x+x2=limx→0+1−x+x21+x+x2−1x=limx→0+−21+x+x2=−2\begin{aligned}f(0^+)&=\lim_{x\to0^+}\frac{1}{x}\ln\frac{1-x+x^2}{1+x+x^2} \\ &=\lim_{x\to0^+}\frac{\frac{1-x+x^2}{1+x+x^2}-1}{x}\\ &=\lim_{x\to0^+}\frac{-2}{1+x+x^2}\\ &=-2 \end{aligned}f(0+)=x→0+limx1ln1+x+x21−x+x2=x→0+limx1+x+x21−x+x2−1=x→0+lim1+x+x2−2=−2
f(0−)=limx→0−ln(1+ax3)1+tanx−1+sinx=limx→0−ax31+sinxcosx−1+sinx=limx→0−ax3cosxcosx+sinx−cosx+sinxcosx=limx→0−ax3cosx(cosx+sinx+cosx+sinxcosx)cosx+sinx−cosx−sinxcosx=limx→0−ax3sinx−sinxcosx⋅limx→0−cosx(cosx+sinx+cosx+sinxcosx)=limx→0−2ax3sinx(1−cosx)=limx→0−2ax3x⋅12x2=4a\begin{aligned} f(0^-)&=\lim_{x\to 0^-}\frac{\ln \left(1+a x^{3}\right)}{\sqrt{1+\tan x}-\sqrt{1+\sin x}}\\ &=\lim_{x\to0^-}\frac{ax^3}{\sqrt{1+\frac{\sin x}{\cos x}}-\sqrt{1+\sin x}}\\ &=\lim_{x\to0^-}\frac{ax^3\sqrt{\cos x}}{\sqrt{\cos x+\sin x}-\sqrt{\cos x+\sin x\cos x }}\\ &=\lim_{x\to0^-}\frac{ax^3\sqrt{\cos x}(\sqrt{\cos x+\sin x}+\sqrt{\cos x+\sin x\cos x })}{\cos x+\sin x-\cos x-\sin x\cos x}\\ &=\lim_{x\to0^-}\frac{ax^3}{\sin x-\sin x\cos x}\cdot\lim_{x\to0^-}\sqrt{\cos x}(\sqrt{\cos x+\sin x}+\sqrt{\cos x+\sin x\cos x })\\ &=\lim_{x\to 0^-}\frac{2ax^3}{\sin x(1-\cos x)}\\ &=\lim_{x\to 0^-}\frac{2ax^3}{x\cdot\frac{1}{2}x^2}\\ &=4a \end{aligned}f(0−)=x→0−lim1+tanx−1+sinxln(1+ax3)=x→0−lim1+cosxsinx−1+sinxax3=x→0−limcosx+sinx−cosx+sinxcosxax3cosx=x→0−limcosx+sinx−cosx−sinxcosxax3cosx(cosx+sinx+cosx+sinxcosx)=x→0−limsinx−sinxcosxax3⋅x→0−limcosx(cosx+sinx+cosx+sinxcosx)=x→0−limsinx(1−cosx)2ax3=x→0−limx⋅21x22ax3=4a
于是就有
4a=−2=b4a=-2=b4a=−2=b
所以
a=−1/2,b=−2a=-1/2,\qquad b=-2a=−1/2,b=−2
2021年1月4日22:26:03