题目:
求:
limx→0+∫0x2t32 dt∫0xt(t−sint) dt\lim_{x\to 0^+}\frac{\int_0^{x^2}t^{\frac{3}{2}}\,\mathrm{d}t}{\int_0^xt(t-\sin t)\,\mathrm{d}t}x→0+lim∫0xt(t−sint)dt∫0x2t23dt
参考答案:
利用洛必达法则:
limx→0+∫0x2t32 dt∫0xt(t−sint) dt=limx→0+x2⋅32⋅2⋅xx(x−sinx)=limx→0+2x3x−sinx=limx→0+6x21−cosx=limx→0+12xsinx=12\begin{aligned}
\lim_{x\to 0^+}\frac{\int_0^{x^2}t^{\frac{3}{2}}\,\mathrm{d}t}{\int_0^xt(t-\sin t)\,\mathrm{d}t}&=\lim_{x\to 0^{+}}\frac{x^{2\cdot\frac{3}{2}}\cdot2\cdot x}{x(x-\sin x)}\\
&=\lim_{x\to 0^{+}}\frac{2x^3}{x-\sin x}\\
&=\lim_{x\to 0^{+}}\frac{6x^2}{1-\cos x}\\
&=\lim_{x\to 0^{+}}\frac{12x}{\sin x}\\
&=12
\end{aligned}x→0+lim∫0xt(t−sint)dt∫0x2t23dt=x→0+limx(x−sinx)x2⋅23⋅2⋅x=x→0+limx−sinx2x3=x→0+lim1−cosx6x2=x→0+limsinx12x=12
2021年1月3日20:59:38