题意:
给定一个数n,如果这个数不是素数,并且满足 (a^n)mod n = a,则这个数叫做:Carmichael Numbers.
思路:
(ab) mod c = ((a mod c) * (b mod c)) mod c.
利用这个性质,二分法快速幂取模。
AC代码
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int N = 65005;
bool prime[N];
bool is_prime(int n) {
for(int i = 2; i <= sqrt(n); i++) {
if(n % i == 0) {
return false;
}
}
return true;
}
void init() {
memset(prime, false, sizeof(prime));
for(int n = 2; n < N; n++) {
if(is_prime(n)) {
prime[n] = true;
}
}
}
int pow_mod(int a, int n, int m) {
if(n == 0) return 1;
int x = pow_mod(a, n/2 , m);
ll ans = (ll)x * x % m;
if(n % 2 == 1) ans = ans * a % m;
return (int)ans;
}
bool judge(int n) {
if(prime[n]) {
return false;
}
for(int a = 2; a <= n-1; a++) {
if(pow_mod(a, n, n) != a) {
return false;
}
}
return true;
}
int main() {
init();
int n;
while(scanf("%d",&n) != EOF && n) {
if(judge(n)) {
printf("The number %d is a Carmichael number.\n", n);
}else {
printf("%d is normal.\n", n);
}
}
return 0;
}