MIT18.06学习笔记 - Lecture 4: Factorization into A = LU

本文是关于MIT 18.06线性代数课程的笔记,聚焦于矩阵A的LU分解。讲解了如何通过消除法得到下三角矩阵L和上三角矩阵U,以及在没有行交换的情况下,如何预测L和U中的零元素。还探讨了为何可以将矩阵A分解为L和U,并引入了通过包含主元的对角矩阵D来改进平衡的分解方式。
部署运行你感兴趣的模型镜像

这个系列文章是我重温Gilbert老爷子的线性代数在线课程的学习笔记。
Course Name:MIT 18.06 Linear Algebra
Text Book: Introduction to Linear Algebra
章节内容: 2.6


课程提纲
1. Factorization A=LU A = L U
2. Explanation: why A=LU A = L U

课程重点

Factorization A=LU A = L U

Many key ideas of linear algebra, when we look at them closely, are really factorizations of a matrix. The first and most important factorization in practice comes from elimination: A=LU A = L U , where factors L L and U are triangular matrices.
The entries of L L are exactly the multipliers lij - which multiplied the pivot row j j when it was subtracted from row i:

A=LU A = L U ( A=LDU A = L D U ) is elimination without row exchanges. The upper triangular U U has the pivots on its diagonal. The lower triangular L has all 1’s on its diagonal. The multipliers are below the diagonal of L L . If no row exchanges, each multiplier lij goes directly into its i i , j position into L L .

Assume no row exchanges, when can we predict zeros in L and U U :

  • When a row of A starts with zeros, so does that row of L L .
  • When a column of A starts with zeros, so does that column of U U .

Explanation: why A=LU

When computing row of U U , we subtract multiples of earlier rows of U (not rows of A A !):

Rewrite this equation to see that the row [l31 l32 1] is multiplying U U :

This is exactly row 3 of A=LU. That row of L L holds l31,l32,1.

Better balance: Divide U U by a diagonal matrix D that contains the pivots:

The triangular factorization can be written A=LU A = L U or A=LDU A = L D U .

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值