数学基础 Probability Theory

本文深入介绍了概率论的基础知识,包括概率的定义、基本属性、条件概率。进一步探讨了随机变量的概念,如CDFs, PDFs, PMFs,以及期望、方差等统计性质。文章还详细阐述了双随机变量的相关概念,如联合和边际分布、独立性以及期望和协方差的关系。通过实例帮助理解概率论在实际问题中的应用。" 137568778,18603402,车载360系统项目:3D视觉与深度学习应用,"['3D视觉', '深度学习', '车载系统', '图像处理', '传感器技术']

基础知识

概率的定义 Axioms of Probability:

  • Sample space ΩΩ: The set of all the outcomes of a random experiment.
  • Set of events(or event space) F: where each event AA∈F is a set containing zero or more outcomes (i.e., AΩA⊆Ω is a collection of possible outcomes of an experiment).
  • Probability measure: A function P:P:F⟶R that satisfies the following propeties:
    • P(A)0P(A)≥0 for all AA∈F
    • P(Ω)=1P(Ω)=1
    • If A1,...,AkA1,...,Ak are disjoint events (i.e., AiAj=Ai∩Aj=∅ whereever iji≠j), then P(iAi)=iP(Ai)P(∪iAi)=∑iP(Ai)

理解:以掷骰子为例,ΩΩ 就是所有的可能出现的点数集{1, 2, 3, 4, 5, 6},F包括了各种事件,比如{1, 2, 3, 4}, {奇数点数},{偶数点数}等等。

概率的基本属性:

  1. If ABP(A)P(B)If A⊆B⟹P(A)≤P(B)
  2. P(AB)min(P(A),P(B))P(A∩B)≤min(P(A),P(B))
  3. P(AB)P(A)+P(B)P(A∪B)≤P(A)+P(B)
  4. P(ΩA)=P(A)=1P(A)P(Ω∖A)=P(A¯)=1−P(A)
  5. If A1,...,AkA1,...,Ak are a set of disjoint events such that ki=1Ai=Ω∪i=1kAi=Ω, then ki=1P(Ak)=1∑i=1kP(Ak)=1.

条件概率:

P(A|B)=P(AB)P(B)P(A|B)=P(A∩B)P(B)

P(A|B)P(A|B) is the probability measure of the event A after observing the occurrence of event B. Two events are independent if and only if P(AB)=P(A)P(B)P(A∩B)=P(A)P(B) or P(A|B)=P(A)P(A|B)=P(A) .

随机变量

扔10次硬币,出现的所有10个正反面(heads and tails)组合(考虑先后顺序)便是样本空间 ΩΩ,比如ω0=<H,H,T,H,T,H,H,T,T,T>Ωω0=<H,H,T,H,T,H,H,T,T,T>∈Ω. 实际问题中,我们往往不关心出现某个特定正反面序列的概率,而更关心real-valued functions of outcomes,比如十次中出现正面的次数,或者连续反面的最长长度,这些函数便是random variables随机变量。所以随机变量是一个函数!
Random variable XX is a function X : Ω R

  • Discrete random variable: P(X=k):=P({ ω:X(ω)=k})P(X=k):=P({ ω:X(ω)=k})

  • Continuous random variable: P(aXb):=P({ ω:aX(ω)b})P(a≤X≤b):=P({ ω:a≤X(ω)≤b})

CDFs, PDFs, PMFs

1.Cumulative distribution function (CDF) is a function FX:[0,1]FX:R⟶[0,1] such that

FX(x)P(Xx)FX(x)≜P(X≤x)

By using this function one can calculate the probability of any event in F.
Properties:
  • 0FX(x)10≤FX(x)≤1.
  • limxFX(x)=0limx→−∞FX(x)=0.
  • limxFX(x)=1limx→∞FX(x)=1.
  • xyFX(x)FX(y)x≤y⟹FX(x)≤FX(y).

2.Probability mass function (PMF) is a function pX:ΩpX:Ω⟶R such that

pX(x)P(X=x)pX(x)≜P(X=x)

Properties:
  • 0pX(x)10≤pX(x)≤1.
  • xVal(X)pX(x)=1∑x∈Val(X)pX(x)=1, Val(X)Val(X) is the set of all possible values XX may assume.
  • x A p X ( x ) = P ( X A ) ? .

3.Probability density functions (PDF) is the derivative of the CDF:

fX(x)dFX(x)dxfX(x)≜dFX(x)dx

PDF for a continuous random variable may not always exist and for very small
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值