基础知识
概率的定义 Axioms of Probability:
- Sample space ΩΩ: The set of all the outcomes of a random experiment.
- Set of events(or event space) F: where each event A∈A∈F is a set containing zero or more outcomes (i.e., A⊆ΩA⊆Ω is a collection of possible outcomes of an experiment).
- Probability measure: A function P:⟶ℝP:F⟶R that satisfies the following propeties:
- P(A)≥0P(A)≥0 for all A∈A∈F
- P(Ω)=1P(Ω)=1
- If A1,...,AkA1,...,Ak are disjoint events (i.e., Ai∩Aj=∅Ai∩Aj=∅ whereever i≠ji≠j), then P(∪iAi)=∑iP(Ai)P(∪iAi)=∑iP(Ai)
理解:以掷骰子为例,ΩΩ 就是所有的可能出现的点数集{1, 2, 3, 4, 5, 6},F包括了各种事件,比如{1, 2, 3, 4}, {奇数点数},{偶数点数}等等。
概率的基本属性:
- If A⊆B⟹P(A)≤P(B)If A⊆B⟹P(A)≤P(B)
- P(A∩B)≤min(P(A),P(B))P(A∩B)≤min(P(A),P(B))
- P(A∪B)≤P(A)+P(B)P(A∪B)≤P(A)+P(B)
- P(Ω∖A)=P(A⎯⎯⎯⎯)=1−P(A)P(Ω∖A)=P(A¯)=1−P(A)
- If A1,...,AkA1,...,Ak are a set of disjoint events such that ∪ki=1Ai=Ω∪i=1kAi=Ω, then ∑ki=1P(Ak)=1∑i=1kP(Ak)=1.
条件概率:
P(A|B)P(A|B) is the probability measure of the event A after observing the occurrence of event B. Two events are independent if and only if P(A∩B)=P(A)P(B)P(A∩B)=P(A)P(B) or P(A|B)=P(A)P(A|B)=P(A) .
随机变量
扔10次硬币,出现的所有10个正反面(heads and tails)组合(考虑先后顺序)便是样本空间 ΩΩ,比如ω0=<H,H,T,H,T,H,H,T,T,T>∈Ωω0=<H,H,T,H,T,H,H,T,T,T>∈Ω. 实际问题中,我们往往不关心出现某个特定正反面序列的概率,而更关心real-valued functions of outcomes,比如十次中出现正面的次数,或者连续反面的最长长度,这些函数便是random variables随机变量。所以随机变量是一个函数!
Random variable XX is a function
Discrete random variable: P(X=k):=P({ ω:X(ω)=k})P(X=k):=P({ ω:X(ω)=k})
Continuous random variable: P(a≤X≤b):=P({ ω:a≤X(ω)≤b})P(a≤X≤b):=P({ ω:a≤X(ω)≤b})
CDFs, PDFs, PMFs
1.Cumulative distribution function (CDF) is a function FX:ℝ⟶[0,1]FX:R⟶[0,1] such that
By using this function one can calculate the probability of any event in F.
Properties:
- 0≤FX(x)≤10≤FX(x)≤1.
- limx→−∞FX(x)=0limx→−∞FX(x)=0.
- limx→∞FX(x)=1limx→∞FX(x)=1.
- x≤y⟹FX(x)≤FX(y)x≤y⟹FX(x)≤FX(y).
2.Probability mass function (PMF) is a function pX:Ω⟶ℝpX:Ω⟶R such that
Properties:
- 0≤pX(x)≤10≤pX(x)≤1.
- ∑x∈Val(X)pX(x)=1∑x∈Val(X)pX(x)=1, Val(X)Val(X) is the set of all possible values XX may assume.
- .
3.Probability density functions (PDF) is the derivative of the CDF:
PDF for a continuous random variable may not always exist and for very small

本文深入介绍了概率论的基础知识,包括概率的定义、基本属性、条件概率。进一步探讨了随机变量的概念,如CDFs, PDFs, PMFs,以及期望、方差等统计性质。文章还详细阐述了双随机变量的相关概念,如联合和边际分布、独立性以及期望和协方差的关系。通过实例帮助理解概率论在实际问题中的应用。"
137568778,18603402,车载360系统项目:3D视觉与深度学习应用,"['3D视觉', '深度学习', '车载系统', '图像处理', '传感器技术']
最低0.47元/天 解锁文章
3万+

被折叠的 条评论
为什么被折叠?



