这个系列文章是我重温Gilbert老爷子的线性代数在线课程的学习笔记。
Course Name:MIT 18.06 Linear Algebra
Text Book: Introduction to Linear Algebra
章节内容: 3.6
课程提纲
1. Four fundamental subspaces for matrix
A
A
课程重点

Four fundamental subspaces for matrix
The rank of a matrix is the number of pivots. The dimension of a subspace is the number of vectors in a basis.
The main point is that the four dimensions are the same for
A
A
and .
The dimension of the row space is the rank
r
r
. The nonzero rows of form a basis.
The dimension of the column space is the rank
r
r
. The pivot columns form a basis.
The nullspace has dimension . The special solutions form a basis.
The nullspace of
RT
R
T
(left nullspace of
R
R
) has dimension .

The big picture

本文总结了Gilbert教授的MIT线性代数课程中关于矩阵的四个基本子空间的内容,包括行空间、列空间、空集空间及左空集空间的基础概念,探讨了它们之间的维度关系及如何寻找各自的基础。
581

被折叠的 条评论
为什么被折叠?



