一维有界Ward-Tordai方程详细推导(含Laplace变换详解)
1. 物理模型与基本方程
1.1 系统描述
考虑有限厚度液层中的扩散-吸附过程:
- 空间域:x∈[0,b]x \in [0, b]x∈[0,b]
- 初始浓度:c(x,0)=c0c(x,0) = c_0c(x,0)=c0
- 边界条件:
- x=0x=0x=0:吸附边界 dΓ(t)dt=D∂c∂x∣x=0\frac{dΓ(t)}{dt} = D \left.\frac{\partial c}{\partial x}\right|_{x=0}dtdΓ(t)=D∂x∂cx=0
- x=bx=bx=b:固定浓度边界 c(b,t)=c0c(b,t) = c_0c(b,t)=c0
1.2 控制方程
∂c∂t=D∂2c∂x2(1) \frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} \quad (1) ∂t∂c=D∂x2∂2c(1)
2. Laplace变换详细推导
2.1 Laplace变换定义
对时间变量ttt进行变换:
L{c(x,t)}=c^(x,s)=∫0∞e−stc(x,t)dt
\mathcal{L}\{c(x,t)\} = \hat{c}(x,s) = \int_0^\infty e^{-st}c(x,t)dt
L{c(x,t)}=c^(x,s)=∫0∞e−stc(x,t)dt
2.2 变换步骤分解
(1) 对扩散方程变换
L{∂c∂t}=sc^(x,s)−c(x,0)=sc^(x,s)−c0
\mathcal{L}\left\{\frac{\partial c}{\partial t}\right\} = s\hat{c}(x,s) - c(x,0) = s\hat{c}(x,s) - c_0
L{∂t∂c}=sc^(x,s)−c(x,0)=sc^(x,s)−c0
L{D∂2c∂x2}=Dd2c^dx2
\mathcal{L}\left\{D \frac{\partial^2 c}{\partial x^2}\right\} = D \frac{d^2\hat{c}}{dx^2}
L{D∂x2∂2c}=Ddx2d2c^
得到:
Dd2c^dx2=sc^−c0(2)
D \frac{d^2\hat{c}}{dx^2} = s\hat{c} - c_0 \quad (2)
Ddx2d2c^=sc^−c0(2)
(2) 边界条件变换
-
x=0x=0x=0边界:
L{dΓdt}=sΓ^(s)−Γ(0)=Ddc^dx∣x=0 \mathcal{L}\left\{\frac{dΓ}{dt}\right\} = s\hat{Γ}(s) - Γ(0) = D \left.\frac{d\hat{c}}{dx}\right|_{x=0} L{dtdΓ}=sΓ^(s)−Γ(0)=Ddxdc^x=0
假设Γ(0)=0Γ(0)=0Γ(0)=0:
sΓ^(s)=Ddc^dx∣x=0(3) s\hat{Γ}(s) = D \left.\frac{d\hat{c}}{dx}\right|_{x=0} \quad (3) sΓ^(s)=Ddxdc^x=0(3) -
x=bx=bx=b边界:
L{c(b,t)}=c0s⇒c^(b,s)=c0s(4) \mathcal{L}\{c(b,t)\} = \frac{c_0}{s} ⇒ \hat{c}(b,s) = \frac{c_0}{s} \quad (4) L{c(b,t)}=sc0⇒c^(b,s)=sc0(4)
2.3 方程求解
(1) 解的非齐次形式
方程(2)可写为:
d2c^dx2−sDc^=−c0D
\frac{d^2\hat{c}}{dx^2} - \frac{s}{D}\hat{c} = -\frac{c_0}{D}
dx2d2c^−Dsc^=−Dc0
通解结构:
c^(x,s)=c^h(x,s)+c^p(x,s)
\hat{c}(x,s) = \hat{c}_h(x,s) + \hat{c}_p(x,s)
c^(x,s)=c^h(x,s)+c^p(x,s)
特解取常数:
c^p(x,s)=c0s
\hat{c}_p(x,s) = \frac{c_0}{s}
c^p(x,s)=sc0
齐次方程解:
c^h(x,s)=Acosh(xs/D)+Bsinh(xs/D)
\hat{c}_h(x,s) = A\cosh\left(x\sqrt{s/D}\right) + B\sinh\left(x\sqrt{s/D}\right)
c^h(x,s)=Acosh(xs/D)+Bsinh(xs/D)
完整解:
c^(x,s)=Acosh(xs/D)+Bsinh(xs/D)+c0s(5)
\hat{c}(x,s) = A\cosh\left(x\sqrt{s/D}\right) + B\sinh\left(x\sqrt{s/D}\right) + \frac{c_0}{s} \quad (5)
c^(x,s)=Acosh(xs/D)+Bsinh(xs/D)+sc0(5)
(2) 边界条件应用
在x=bx=bx=b处:
Acosh(bs/D)+Bsinh(bs/D)=0(6)
A\cosh\left(b\sqrt{s/D}\right) + B\sinh\left(b\sqrt{s/D}\right) = 0 \quad (6)
Acosh(bs/D)+Bsinh(bs/D)=0(6)
在x=0x=0x=0处:
dc^dx∣x=0=A⋅0+Bs/D=sΓ^(s)D(7)
\left.\frac{d\hat{c}}{dx}\right|_{x=0} = A\cdot 0 + B\sqrt{s/D} = \frac{s\hat{Γ}(s)}{D} \quad (7)
dxdc^x=0=A⋅0+Bs/D=DsΓ^(s)(7)
由式(6)解得:
A=−Btanh(bs/D)(8)
A = -B \tanh\left(b\sqrt{s/D}\right) \quad (8)
A=−Btanh(bs/D)(8)
将式(8)代入式(7):
B=sΓ^(s)Ds/D=Γ^(s)sD1/2(9)
B = \frac{s\hat{Γ}(s)}{D\sqrt{s/D}} = \frac{\hat{Γ}(s)\sqrt{s}}{D^{1/2}} \quad (9)
B=Ds/DsΓ^(s)=D1/2Γ^(s)s(9)
(3) 浓度解表达式
将系数代回式(5):
c^(x,s)=c0s+Γ^(s)sD1/2[−tanh(bs/D)cosh(xs/D)+sinh(xs/D)](10)
\hat{c}(x,s) = \frac{c_0}{s} + \frac{\hat{Γ}(s)\sqrt{s}}{D^{1/2}} \left[ -\tanh\left(b\sqrt{s/D}\right)\cosh\left(x\sqrt{s/D}\right) + \sinh\left(x\sqrt{s/D}\right) \right] \quad (10)
c^(x,s)=sc0+D1/2Γ^(s)s[−tanh(bs/D)cosh(xs/D)+sinh(xs/D)](10)
2.4 吸附量方程推导
(1) 界面浓度关系
取x=0x=0x=0处的浓度:
c^(0,s)=c0s−Γ^(s)sD1/2tanh(bs/D)(11)
\hat{c}(0,s) = \frac{c_0}{s} - \frac{\hat{Γ}(s)\sqrt{s}}{D^{1/2}} \tanh\left(b\sqrt{s/D}\right) \quad (11)
c^(0,s)=sc0−D1/2Γ^(s)stanh(bs/D)(11)
(2) 吸附等温式耦合
假设线性吸附:
Γ(t)=Kc(0,t)⇒Γ^(s)=Kc^(0,s)(12)
Γ(t) = K c(0,t) ⇒ \hat{Γ}(s) = K \hat{c}(0,s) \quad (12)
Γ(t)=Kc(0,t)⇒Γ^(s)=Kc^(0,s)(12)
联立式(11)(12):
Γ^(s)=Kc0s−KsD1/2tanh(bs/D)Γ^(s)
\hat{Γ}(s) = \frac{K c_0}{s} - \frac{K \sqrt{s}}{D^{1/2}} \tanh\left(b\sqrt{s/D}\right) \hat{Γ}(s)
Γ^(s)=sKc0−D1/2Kstanh(bs/D)Γ^(s)
整理得:
Γ^(s)[1+KsD1/2tanh(bs/D)]=Kc0s
\hat{Γ}(s) \left[ 1 + \frac{K \sqrt{s}}{D^{1/2}} \tanh\left(b\sqrt{s/D}\right) \right] = \frac{K c_0}{s}
Γ^(s)[1+D1/2Kstanh(bs/D)]=sKc0
最终解:
Γ^(s)=Kc0s[1+KsD1/2tanh(bs/D)](13)
\hat{Γ}(s) = \frac{K c_0}{s \left[ 1 + \frac{K \sqrt{s}}{D^{1/2}} \tanh\left(b\sqrt{s/D}\right) \right]} \quad (13)
Γ^(s)=s[1+D1/2Kstanh(bs/D)]Kc0(13)
3. Laplace逆变换分析
3.1 短时间近似(t≪b2/Dt \ll b^2/Dt≪b2/D)
当s→∞s \to \inftys→∞时:
tanh(bs/D)≈1
\tanh\left(b\sqrt{s/D}\right) \approx 1
tanh(bs/D)≈1
方程(13)简化为:
Γ^(s)≈Kc0s+Ks1/2/D1/2
\hat{Γ}(s) \approx \frac{K c_0}{s + K s^{1/2}/D^{1/2}}
Γ^(s)≈s+Ks1/2/D1/2Kc0
逆变换得经典解:
Γ(t)≈2c0Dtπ(t→0)
Γ(t) \approx 2c_0 \sqrt{\frac{D t}{\pi}} \quad (t \to 0)
Γ(t)≈2c0πDt(t→0)
3.2 长时间近似(t≫b2/Dt \gg b^2/Dt≫b2/D)
当s→0s \to 0s→0时:
tanh(bs/D)≈bs/D
\tanh\left(b\sqrt{s/D}\right) \approx b\sqrt{s/D}
tanh(bs/D)≈bs/D
方程(13)简化为:
Γ^(s)≈Kc0s(1+Kb/D)=Kc01+Kb/D⋅1s
\hat{Γ}(s) \approx \frac{K c_0}{s (1 + K b/D)} = \frac{K c_0}{1 + K b/D} \cdot \frac{1}{s}
Γ^(s)≈s(1+Kb/D)Kc0=1+Kb/DKc0⋅s1
逆变换得稳态解:
Γ(t)→Kc01+Kb/D(t→∞)
Γ(t) \to \frac{K c_0}{1 + K b/D} \quad (t \to \infty)
Γ(t)→1+Kb/DKc0(t→∞)
4. Laplace逆变换详解
(1) 留数定理法
Γ(t)=∑Res[estΓ^(s)]s=sk
Γ(t) = \sum \text{Res}\left[ e^{st}\hat{Γ}(s) \right]_{s=s_k}
Γ(t)=∑Res[estΓ^(s)]s=sk
极点来源:
- s=0s=0s=0:简单极点
- 1+KsDtanh(bs/D)=01 + \frac{K\sqrt{s}}{\sqrt{D}} \tanh(b\sqrt{s/D}) = 01+DKstanh(bs/D)=0:无穷多个根
(2) 极点分析
在s=0s=0s=0处:
留数计算得稳态解:
Γeq=Kc01+Kb/D
Γ_{eq} = \frac{K c_0}{1 + K b / D}
Γeq=1+Kb/DKc0
非零极点sns_nsn:
需数值求解超越方程:
1+KsnDtan(bsn/D)=0(设s=−a2)
1 + \frac{K\sqrt{s_n}}{\sqrt{D}} \tan\left(b\sqrt{s_n/D}\right) = 0 \quad (\text{设}s = -a^2)
1+DKsntan(bsn/D)=0(设s=−a2)

1322

被折叠的 条评论
为什么被折叠?



