一维有界Ward-Tordai方程详细推导

一维有界Ward-Tordai方程详细推导(含Laplace变换详解)

1. 物理模型与基本方程

1.1 系统描述

考虑有限厚度液层中的扩散-吸附过程:

  • 空间域:x∈[0,b]x \in [0, b]x[0,b]
  • 初始浓度:c(x,0)=c0c(x,0) = c_0c(x,0)=c0
  • 边界条件:
    • x=0x=0x=0:吸附边界 dΓ(t)dt=D∂c∂x∣x=0\frac{dΓ(t)}{dt} = D \left.\frac{\partial c}{\partial x}\right|_{x=0}dtdΓ(t)=Dxcx=0
    • x=bx=bx=b:固定浓度边界 c(b,t)=c0c(b,t) = c_0c(b,t)=c0

1.2 控制方程

∂c∂t=D∂2c∂x2(1) \frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} \quad (1) tc=Dx22c(1)

2. Laplace变换详细推导

2.1 Laplace变换定义

对时间变量ttt进行变换:
L{c(x,t)}=c^(x,s)=∫0∞e−stc(x,t)dt \mathcal{L}\{c(x,t)\} = \hat{c}(x,s) = \int_0^\infty e^{-st}c(x,t)dt L{c(x,t)}=c^(x,s)=0estc(x,t)dt

2.2 变换步骤分解

(1) 对扩散方程变换

L{∂c∂t}=sc^(x,s)−c(x,0)=sc^(x,s)−c0 \mathcal{L}\left\{\frac{\partial c}{\partial t}\right\} = s\hat{c}(x,s) - c(x,0) = s\hat{c}(x,s) - c_0 L{tc}=sc^(x,s)c(x,0)=sc^(x,s)c0
L{D∂2c∂x2}=Dd2c^dx2 \mathcal{L}\left\{D \frac{\partial^2 c}{\partial x^2}\right\} = D \frac{d^2\hat{c}}{dx^2} L{Dx22c}=Ddx2d2c^
得到:
Dd2c^dx2=sc^−c0(2) D \frac{d^2\hat{c}}{dx^2} = s\hat{c} - c_0 \quad (2) Ddx2d2c^=sc^c0(2)

(2) 边界条件变换
  • x=0x=0x=0边界:
    L{dΓdt}=sΓ^(s)−Γ(0)=Ddc^dx∣x=0 \mathcal{L}\left\{\frac{dΓ}{dt}\right\} = s\hat{Γ}(s) - Γ(0) = D \left.\frac{d\hat{c}}{dx}\right|_{x=0} L{dtdΓ}=sΓ^(s)Γ(0)=Ddxdc^x=0
    假设Γ(0)=0Γ(0)=0Γ(0)=0
    sΓ^(s)=Ddc^dx∣x=0(3) s\hat{Γ}(s) = D \left.\frac{d\hat{c}}{dx}\right|_{x=0} \quad (3) sΓ^(s)=Ddxdc^x=0(3)

  • x=bx=bx=b边界:
    L{c(b,t)}=c0s⇒c^(b,s)=c0s(4) \mathcal{L}\{c(b,t)\} = \frac{c_0}{s} ⇒ \hat{c}(b,s) = \frac{c_0}{s} \quad (4) L{c(b,t)}=sc0c^(b,s)=sc0(4)

2.3 方程求解

(1) 解的非齐次形式

方程(2)可写为:
d2c^dx2−sDc^=−c0D \frac{d^2\hat{c}}{dx^2} - \frac{s}{D}\hat{c} = -\frac{c_0}{D} dx2d2c^Dsc^=Dc0
通解结构:
c^(x,s)=c^h(x,s)+c^p(x,s) \hat{c}(x,s) = \hat{c}_h(x,s) + \hat{c}_p(x,s) c^(x,s)=c^h(x,s)+c^p(x,s)

特解取常数:
c^p(x,s)=c0s \hat{c}_p(x,s) = \frac{c_0}{s} c^p(x,s)=sc0

齐次方程解:
c^h(x,s)=Acosh⁡(xs/D)+Bsinh⁡(xs/D) \hat{c}_h(x,s) = A\cosh\left(x\sqrt{s/D}\right) + B\sinh\left(x\sqrt{s/D}\right) c^h(x,s)=Acosh(xs/D)+Bsinh(xs/D)

完整解:
c^(x,s)=Acosh⁡(xs/D)+Bsinh⁡(xs/D)+c0s(5) \hat{c}(x,s) = A\cosh\left(x\sqrt{s/D}\right) + B\sinh\left(x\sqrt{s/D}\right) + \frac{c_0}{s} \quad (5) c^(x,s)=Acosh(xs/D)+Bsinh(xs/D)+sc0(5)

(2) 边界条件应用

x=bx=bx=b
Acosh⁡(bs/D)+Bsinh⁡(bs/D)=0(6) A\cosh\left(b\sqrt{s/D}\right) + B\sinh\left(b\sqrt{s/D}\right) = 0 \quad (6) Acosh(bs/D)+Bsinh(bs/D)=0(6)

x=0x=0x=0
dc^dx∣x=0=A⋅0+Bs/D=sΓ^(s)D(7) \left.\frac{d\hat{c}}{dx}\right|_{x=0} = A\cdot 0 + B\sqrt{s/D} = \frac{s\hat{Γ}(s)}{D} \quad (7) dxdc^x=0=A0+Bs/D=DsΓ^(s)(7)

由式(6)解得:
A=−Btanh⁡(bs/D)(8) A = -B \tanh\left(b\sqrt{s/D}\right) \quad (8) A=Btanh(bs/D)(8)

将式(8)代入式(7):
B=sΓ^(s)Ds/D=Γ^(s)sD1/2(9) B = \frac{s\hat{Γ}(s)}{D\sqrt{s/D}} = \frac{\hat{Γ}(s)\sqrt{s}}{D^{1/2}} \quad (9) B=Ds/DsΓ^(s)=D1/2Γ^(s)s(9)

(3) 浓度解表达式

将系数代回式(5):
c^(x,s)=c0s+Γ^(s)sD1/2[−tanh⁡(bs/D)cosh⁡(xs/D)+sinh⁡(xs/D)](10) \hat{c}(x,s) = \frac{c_0}{s} + \frac{\hat{Γ}(s)\sqrt{s}}{D^{1/2}} \left[ -\tanh\left(b\sqrt{s/D}\right)\cosh\left(x\sqrt{s/D}\right) + \sinh\left(x\sqrt{s/D}\right) \right] \quad (10) c^(x,s)=sc0+D1/2Γ^(s)s[tanh(bs/D)cosh(xs/D)+sinh(xs/D)](10)

2.4 吸附量方程推导

(1) 界面浓度关系

x=0x=0x=0处的浓度:
c^(0,s)=c0s−Γ^(s)sD1/2tanh⁡(bs/D)(11) \hat{c}(0,s) = \frac{c_0}{s} - \frac{\hat{Γ}(s)\sqrt{s}}{D^{1/2}} \tanh\left(b\sqrt{s/D}\right) \quad (11) c^(0,s)=sc0D1/2Γ^(s)stanh(bs/D)(11)

(2) 吸附等温式耦合

假设线性吸附:
Γ(t)=Kc(0,t)⇒Γ^(s)=Kc^(0,s)(12) Γ(t) = K c(0,t) ⇒ \hat{Γ}(s) = K \hat{c}(0,s) \quad (12) Γ(t)=Kc(0,t)Γ^(s)=Kc^(0,s)(12)

联立式(11)(12):
Γ^(s)=Kc0s−KsD1/2tanh⁡(bs/D)Γ^(s) \hat{Γ}(s) = \frac{K c_0}{s} - \frac{K \sqrt{s}}{D^{1/2}} \tanh\left(b\sqrt{s/D}\right) \hat{Γ}(s) Γ^(s)=sKc0D1/2Kstanh(bs/D)Γ^(s)

整理得:
Γ^(s)[1+KsD1/2tanh⁡(bs/D)]=Kc0s \hat{Γ}(s) \left[ 1 + \frac{K \sqrt{s}}{D^{1/2}} \tanh\left(b\sqrt{s/D}\right) \right] = \frac{K c_0}{s} Γ^(s)[1+D1/2Kstanh(bs/D)]=sKc0

最终解:
Γ^(s)=Kc0s[1+KsD1/2tanh⁡(bs/D)](13) \hat{Γ}(s) = \frac{K c_0}{s \left[ 1 + \frac{K \sqrt{s}}{D^{1/2}} \tanh\left(b\sqrt{s/D}\right) \right]} \quad (13) Γ^(s)=s[1+D1/2Kstanh(bs/D)]Kc0(13)

3. Laplace逆变换分析

3.1 短时间近似(t≪b2/Dt \ll b^2/Dtb2/D

s→∞s \to \inftys时:
tanh⁡(bs/D)≈1 \tanh\left(b\sqrt{s/D}\right) \approx 1 tanh(bs/D)1
方程(13)简化为:
Γ^(s)≈Kc0s+Ks1/2/D1/2 \hat{Γ}(s) \approx \frac{K c_0}{s + K s^{1/2}/D^{1/2}} Γ^(s)s+Ks1/2/D1/2Kc0

逆变换得经典解:
Γ(t)≈2c0Dtπ(t→0) Γ(t) \approx 2c_0 \sqrt{\frac{D t}{\pi}} \quad (t \to 0) Γ(t)2c0πDt(t0)

3.2 长时间近似(t≫b2/Dt \gg b^2/Dtb2/D

s→0s \to 0s0时:
tanh⁡(bs/D)≈bs/D \tanh\left(b\sqrt{s/D}\right) \approx b\sqrt{s/D} tanh(bs/D)bs/D
方程(13)简化为:
Γ^(s)≈Kc0s(1+Kb/D)=Kc01+Kb/D⋅1s \hat{Γ}(s) \approx \frac{K c_0}{s (1 + K b/D)} = \frac{K c_0}{1 + K b/D} \cdot \frac{1}{s} Γ^(s)s(1+Kb/D)Kc0=1+Kb/DKc0s1

逆变换得稳态解:
Γ(t)→Kc01+Kb/D(t→∞) Γ(t) \to \frac{K c_0}{1 + K b/D} \quad (t \to \infty) Γ(t)1+Kb/DKc0(t)

4. Laplace逆变换详解

(1) 留数定理法

Γ(t)=∑Res[estΓ^(s)]s=sk Γ(t) = \sum \text{Res}\left[ e^{st}\hat{Γ}(s) \right]_{s=s_k} Γ(t)=Res[estΓ^(s)]s=sk
极点来源:

  1. s=0s=0s=0:简单极点
  2. 1+KsDtanh⁡(bs/D)=01 + \frac{K\sqrt{s}}{\sqrt{D}} \tanh(b\sqrt{s/D}) = 01+DKstanh(bs/D)=0:无穷多个根
(2) 极点分析

s=0s=0s=0
留数计算得稳态解:
Γeq=Kc01+Kb/D Γ_{eq} = \frac{K c_0}{1 + K b / D} Γeq=1+Kb/DKc0

非零极点sns_nsn
需数值求解超越方程:
1+KsnDtan⁡(bsn/D)=0(设s=−a2) 1 + \frac{K\sqrt{s_n}}{\sqrt{D}} \tan\left(b\sqrt{s_n/D}\right) = 0 \quad (\text{设}s = -a^2) 1+DKsntan(bsn/D)=0(s=a2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值