电化学界面的电化学阻抗-1

本文详细介绍了Gouy-Chapman-Stern模型下的电化学双层(EDL),包括紧致层与Helmholtz平面的构成,以及扩散层的Debye长度概念。探讨了EDL的电容模型和阻抗表达,并重点讲解了频率依赖的Gouy-Chapmann电容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

An electrochemical double layer (EDL) can be described by Gouy-Chapman-Stern (GCS) model.
The EDL is composed of a compact layer between the metal surface and the Helmholtz plane (HP), and a diffuse layer stretching toward the solution bulk
The HP layer has the thickness around several A ˚ \mathring{A} A˚.
The diffuse layer has a characteristic thickness, termed the Debye length and expressed as
λ D = ϵ s R T / 2 F 2 c 0 \lambda_D=\sqrt {\epsilon_sRT/2F^2c_0} λD=ϵsRT/2F2c0
where,
λ D \lambda_D λD is the Debye length,
ϵ s \epsilon_s ϵs Is the dielectric constant of the bulk solution,
c 0 c_0 c0 Is the bulk concentration,
R R R Is the ideal gas constant,
T T T Is temperature,
F F F Is the Faraday constant.
EDL can be modeled as a series connection of a compact capacitor C H C_H CH And a diffuse layer part C G C C_{GC} CGC.
The capacitance of the compact capacitor is expressed as
C H = ϵ H δ H C_H=\frac{\epsilon_H}{\delta_H} CH=δHϵH
where,
ϵ H \epsilon_H ϵH is the permittivity of the space between the metal surface and the compact layer; δ H \delta_H δHis the thickness of the space between the metal surface and the compact layer.
Therefore, the impedance of the EDL is expressed as
Z D L = Z H + Z G C = 1 j ω C H + 1 j ω Z G C Z_{DL}=Z_H + Z_{GC}=\frac{1}{j\omega C_H}+\frac{1}{j\omega Z_{GC}} ZDL=ZH+ZGC=jωCH1+jωZGC1
where ω \omega ω Is the angular frequency of the perturbation.
Gouy-Chapman capacitance can be simplified as the impedance of a pure capacitor, even though it shows frequency dispersion which most often described empricially using a s constant phase element (CPE).
Z G C = ϵ s λ D c o s h ( U M − U p z c 2 ) Z_{GC}=\frac{\epsilon_s}{\lambda_D}cosh \left( \frac{U_M-U_{pzc}}{2}\right) ZGC=λDϵscosh(2UMUpzc)
where,
U M = F ϕ M R T U_M=\frac{F\phi_M}{RT} UM=RTFϕM
is the electrode potential normalized with respect to thermal voltage,
U p z c U_{pzc} Upzc is the normalized potential of zero charge.

NOTE

c o s h x = e x + e − x 2 cosh x =\frac{e^x+e^{-x}}{2} coshx=2ex+ex

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值