设n≥kn \geq kn≥k是两个正整数。集合A={1,2,22,23,…,2n−1}A=\{1, 2, 2^2, 2^3, \ldots, 2^{n-1}\}A={1,2,22,23,…,2n−1}共nnn个数。从AAA中任取kkk个数相乘,这样的乘积共有(nk)=n!k!(n−k)!\binom{n}{k}=\frac{n!}{k!(n-k)!}(kn)=k!(n−k)!n!个. 把这(nk)\binom{n}{k}(kn)个乘积相加,得到的和记作an,ka_{n, k}an,k.
例子:A={1,2,4}A=\{1, 2, 4\}A={1,2,4}, 则n=3,a3,2=2+4+2×4=14n=3, a_{3, 2} = 2+4+2\times 4=14n=3,a3,2=2+4+2×4=14.
解答下面的问题:
- 设n≥2n \geq 2n≥2. 求an,2a_{n, 2}an,2.
- 设有多项式fn(x)=1+an,1x+an,2x2+…+an,nxn.f_n(x)=1+a_{n, 1}x+a_{n, 2}x^2 + \ldots +a_{n, n}x^n.fn(x)=1+an,1x+an,2x2+…+an,nxn. 已知fn+1(x)fn(x)\frac{f_{n+1}(x)}{f_n(x)}fn(x)fn+1(x)与fn+1(x)fn(2x)\frac{f_{n+1}(x)}{f_n(2x)}fn(2x)fn+1(x)都是整系数多项式。计算这两个多项式。
- 计算fn(x)f_{n}(x)fn(x).
- 求an+1,k+1an,k\frac{a_{n+1, k+1}}{a_{n, k}}an,kan+1,k+1. (结果用n,kn, kn,k表示)
答案:
- an,2=(1/3)⋅(4n+2)−2na_{n, 2} = (1/3)\cdot (4^n+2)-2^nan,2=(1/3)⋅(4n+2)−2n.
- fn+1(x)fn(x)=2nx+1,fn+1(x)fn(2x)=x+1\frac{f_{n+1}(x)}{f_n(x)}=2^n x + 1, \frac{f_{n+1}(x)}{f_n(2x)}=x+1fn(x)fn+1(x)=2nx+1,fn(2x)fn+1(x)=x+1.
- fn(x)=∏j=0n−1(2jx+1)f_n(x)= \prod_{j=0}^{n-1} (2^jx + 1)fn(x)=∏j=0n−1(2jx+1).
- an+1,k+1an,k=2n+k+1−2k2k+1−1\frac{a_{n+1, k+1}}{a_{n, k}}=\frac{2^{n+k+1}-2^k}{2^{k+1}-1}an,kan+1,k+1=2k+1−12n+k+1−2k.