The idea of the method of little groups, by Wigner and Mackey, can be summarised as follows. (Excerpted from Section 8.2 in GTM 42, Linear representations of finite groups, by J.-P. Serre)
Assume that the group GGG is a semi-direct product of its two subgroups HHH and AAA, with AAA abelian. Denote A^:=Hom(A,C×)\hat{A}:=\mathrm{Hom}(A, \mathbb{C}^\times)A^:=Hom(A,C×). The group GGG acts on A^\hat{A}A^ by (gχ)(a)=χ(g−1ag),∀g∈G,a∈A,χ∈A^.(g\chi)(a)=\chi(g^{-1}ag), \forall g \in G, a \in A, \chi \in \hat{A}.(gχ)(a)=χ(g−1ag),∀g∈G,a∈A,χ∈A^.
Let (χi)i∈A^/H(\chi_i)_{i \in \hat{A}/H}(χi)i∈A^/H be a system of representatives for the orbits of HHH in A^\hat{A}A^. For each i∈A^/Hi \in \hat{A}/Hi∈A^/H, let Hi=StabH(χi)={h∈H∣hχi=χi}H_i = \mathrm{Stab}_H(\chi_i)=\{h \in H \mid h\chi_i = \chi_i\}Hi=StabH(χi)={h∈H∣hχi=χi} and let Gi=A⋅Hi<GG_i = A \cdot H_i < GGi=A⋅Hi<G. Extend χi\chi_iχi to GiG_iGi by setting χi(ah)=χi(a),∀a∈A,h∈Hi\chi_i(ah)=\chi_i(a), \forall a \in A, h \in H_iχi(ah)=χi(a),∀a∈A,h∈Hi.
Now let ρ∈Irr(Hi)\rho \in \mathrm{Irr}(H_i)ρ∈Irr(Hi) and p:Gi→Hip: G_i \to H_ip:Gi→Hi the canonical projection. We thus have an irreducible representation ρ~=p∘ρ\tilde{\rho}=p\circ \rhoρ~=p∘ρ of GiG_iGi. Finally, by taking the tensor product of χi\chi_iχi and ρ~\tilde{\rho}ρ~ we obtain an irreducible representation χ⊗ρ~\chi \otimes \tilde{\rho}χ⊗ρ~ of GiG_iGi.
Denote θi,ρ=IndGiGχi⊗ρ~\theta_{i, \rho} = \mathrm{Ind}_{G_i}^G \chi_i \otimes \tilde{\rho}θi,ρ=IndGiGχi⊗ρ~. Assume the following results:
Proposition: (a) θi,ρ\theta_{i, \rho}θi,ρ is irreducible;
(b) If θi,ρ\theta_{i, \rho}θi,ρ and θi′,ρ′\theta_{i', \rho'}θi′,ρ′ are isomorphic, then i=i′i = i'i=i′ and ρ∼ρ′\rho \sim \rho'ρ∼ρ′ (isomorphic);
© Every irreducible representation of GGG is isomorphic to one of the θi,ρ\theta_{i, \rho}θi,ρ.
Exercise.
- The Heisenberg group Hn(k)\mathbf{H}_n(k)Hn(k) over a field kkk of dimension nnn can be construct via the exact sequence 0→k→Hn(k)→W→0,0 \to k \to \mathbf{H}_n(k)\to W \to 0,0→k→Hn(k)→W→0,
where W=V⊕V′W=V \oplus V'W=V⊕V′ and V=knV= k^nV=kn is a vector space of dimension nnn. The group law of Hn(k)\mathbf{H}_n(k)Hn(k) is given by (x,x′,a)(y,y′,b)=(x+x′,y+y′,a+b+xy′),(x, x', a)(y, y', b)=(x+x', y+y', a+b+xy'),(x,x′,a)(y,y′,b)=(x+x′,y+y′,a+b+xy′),
where (x,x′),(y,y′)∈W(x, x'), (y, y') \in W(x,x′),(y,y′)∈W and a,b∈ka, b \in ka,b∈k.
Solve the following problems.
(i) Find an embedding of Hn(k)\mathbf{H}_n(k)Hn(k) into the group of unipotent upper-triangluar matrices of the form (1x⊤t0Inx′001).\begin{pmatrix} 1 & x^\top & t \\ 0 & I_n & x' \\ 0 & 0 & 1\end{pmatrix}.100x⊤In0tx′1.
(ii) Apply the method of little groups to H1(k)\mathbf{H}_1(k)H1(k) in the case that k=Fpk = \mathbb{F}_pk=Fp (a finite field of cardinality ppp), by taking A={(0,x′,a)}A = \{(0, x', a)\}A={(0,x′,a)} and H={(x,0,0)}H=\{(x, 0, 0)\}H={(x,0,0)}. Find all θi,ρ\theta_{i, \rho}θi,ρ.
Assume the fact that R^≅R\hat{\mathbb{R}} \cong \mathbb{R}R^≅R.
(iii) (Challenge) Apply the method of little groups to H1(k)\mathbf{H}_1(k)H1(k) in the case that k=Rk = \mathbb{R}k=R. Find all θi,ρ\theta_{i, \rho}θi,ρ.
- The Euclidean motion group of the Cartesian plane is the semi-direct product of H=SO(2)H=\mathbf{SO}(2)H=SO(2) and A=R2A=\mathbb{R}^2A=R2. Apply the method of little groups to this group and work out the representations θi,ρ\theta_{i, \rho}θi,ρ (The action of HHH on AAA is obvious.)
- Do the same thing in 2 to the group B={(ab0a−1)∣a,b∈R,a≠0}.B = \{\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \mid a, b \in \mathbb{R}, a \neq 0\}.B={(a0ba−1)∣a,b∈R,a=0}.