The method of little groups

本文概述了Wigner-Mackey方法,讨论了半直积群的表示理论,特别针对Heisenberg群的构造和在有限域上的应用。通过小群方法,探讨了Heisenberg群在上三角矩阵和欧几里得平移群中的表示形式,以及仿射群的表示问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The idea of the method of little groups, by Wigner and Mackey, can be summarised as follows. (Excerpted from Section 8.2 in GTM 42, Linear representations of finite groups, by J.-P. Serre)

Assume that the group GGG is a semi-direct product of its two subgroups HHH and AAA, with AAA abelian. Denote A^:=Hom(A,C×)\hat{A}:=\mathrm{Hom}(A, \mathbb{C}^\times)A^:=Hom(A,C×). The group GGG acts on A^\hat{A}A^ by (gχ)(a)=χ(g−1ag),∀g∈G,a∈A,χ∈A^.(g\chi)(a)=\chi(g^{-1}ag), \forall g \in G, a \in A, \chi \in \hat{A}.(gχ)(a)=χ(g1ag),gG,aA,χA^.

Let (χi)i∈A^/H(\chi_i)_{i \in \hat{A}/H}(χi)iA^/H be a system of representatives for the orbits of HHH in A^\hat{A}A^. For each i∈A^/Hi \in \hat{A}/HiA^/H, let Hi=StabH(χi)={h∈H∣hχi=χi}H_i = \mathrm{Stab}_H(\chi_i)=\{h \in H \mid h\chi_i = \chi_i\}Hi=StabH(χi)={hHhχi=χi} and let Gi=A⋅Hi<GG_i = A \cdot H_i < GGi=AHi<G. Extend χi\chi_iχi to GiG_iGi by setting χi(ah)=χi(a),∀a∈A,h∈Hi\chi_i(ah)=\chi_i(a), \forall a \in A, h \in H_iχi(ah)=χi(a),aA,hHi.

Now let ρ∈Irr(Hi)\rho \in \mathrm{Irr}(H_i)ρIrr(Hi) and p:Gi→Hip: G_i \to H_ip:GiHi the canonical projection. We thus have an irreducible representation ρ~=p∘ρ\tilde{\rho}=p\circ \rhoρ~=pρ of GiG_iGi. Finally, by taking the tensor product of χi\chi_iχi and ρ~\tilde{\rho}ρ~ we obtain an irreducible representation χ⊗ρ~\chi \otimes \tilde{\rho}χρ~ of GiG_iGi.

Denote θi,ρ=IndGiGχi⊗ρ~\theta_{i, \rho} = \mathrm{Ind}_{G_i}^G \chi_i \otimes \tilde{\rho}θi,ρ=IndGiGχiρ~. Assume the following results:

Proposition: (a) θi,ρ\theta_{i, \rho}θi,ρ is irreducible;
(b) If θi,ρ\theta_{i, \rho}θi,ρ and θi′,ρ′\theta_{i', \rho'}θi,ρ are isomorphic, then i=i′i = i'i=i and ρ∼ρ′\rho \sim \rho'ρρ (isomorphic);
© Every irreducible representation of GGG is isomorphic to one of the θi,ρ\theta_{i, \rho}θi,ρ.

Exercise.

  1. The Heisenberg group Hn(k)\mathbf{H}_n(k)Hn(k) over a field kkk of dimension nnn can be construct via the exact sequence 0→k→Hn(k)→W→0,0 \to k \to \mathbf{H}_n(k)\to W \to 0,0kHn(k)W0,
    where W=V⊕V′W=V \oplus V'W=VV and V=knV= k^nV=kn is a vector space of dimension nnn. The group law of Hn(k)\mathbf{H}_n(k)Hn(k) is given by (x,x′,a)(y,y′,b)=(x+x′,y+y′,a+b+xy′),(x, x', a)(y, y', b)=(x+x', y+y', a+b+xy'),(x,x,a)(y,y,b)=(x+x,y+y,a+b+xy),
    where (x,x′),(y,y′)∈W(x, x'), (y, y') \in W(x,x),(y,y)W and a,b∈ka, b \in ka,bk.

Solve the following problems.
(i) Find an embedding of Hn(k)\mathbf{H}_n(k)Hn(k) into the group of unipotent upper-triangluar matrices of the form (1x⊤t0Inx′001).\begin{pmatrix} 1 & x^\top & t \\ 0 & I_n & x' \\ 0 & 0 & 1\end{pmatrix}.100xIn0tx1.

(ii) Apply the method of little groups to H1(k)\mathbf{H}_1(k)H1(k) in the case that k=Fpk = \mathbb{F}_pk=Fp (a finite field of cardinality ppp), by taking A={(0,x′,a)}A = \{(0, x', a)\}A={(0,x,a)} and H={(x,0,0)}H=\{(x, 0, 0)\}H={(x,0,0)}. Find all θi,ρ\theta_{i, \rho}θi,ρ.

Assume the fact that R^≅R\hat{\mathbb{R}} \cong \mathbb{R}R^R.

(iii) (Challenge) Apply the method of little groups to H1(k)\mathbf{H}_1(k)H1(k) in the case that k=Rk = \mathbb{R}k=R. Find all θi,ρ\theta_{i, \rho}θi,ρ.

  1. The Euclidean motion group of the Cartesian plane is the semi-direct product of H=SO(2)H=\mathbf{SO}(2)H=SO(2) and A=R2A=\mathbb{R}^2A=R2. Apply the method of little groups to this group and work out the representations θi,ρ\theta_{i, \rho}θi,ρ (The action of HHH on AAA is obvious.)
  2. Do the same thing in 2 to the group B={(ab0a−1)∣a,b∈R,a≠0}.B = \{\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \mid a, b \in \mathbb{R}, a \neq 0\}.B={(a0ba1)a,bR,a=0}.

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值