Just the Facts
The expression N!,
read as ``N factorial," denotes the product of
the first N positive integers, where N is
nonnegative. So, for example,
Just the Facts |
N | N! |
0 | 1 |
1 | 1 |
2 | 2 |
3 | 6 |
4 | 24 |
5 | 120 |
10 | 3628800 |
For this problem, you are to write a program that can compute the last non-zero digit of any factorial for ( ). For example,
if your program is asked to compute the last nonzero digit of 5!, your program should produce ``2" because 5! = 120, and 2 is the last nonzero digit of 120.
Input
Input to the program is a series of nonnegative integers not exceeding 10000, each on its own line with no other letters, digits or spaces. For each integer N, you should read the value and compute the last nonzero digit of N!.
Output
For each integer input, the program should print exactly one line of output. Each line of output should contain the value N, right-justified in columns 1 through 5 with leading blanks, not leading zeroes. Columns 6 - 9 must contain `` -> " (space hyphen greater space). Column 10 must contain the single last non-zero digit of N!.
Sample Input
1 2 26 125 3125 9999
Sample Output
1 -> 1 2 -> 2 26 -> 4 125 -> 8 3125 -> 2 9999 -> 8题目大意:给出n(n < 10000),求n!后面有多少个0。
解题思路:每乘一个数的时候就要进行判断,去除后面的0,因为n<10000,所以每次可以模掉10000.(10000刚好,1000会有误差)
#include<stdio.h>
int main(){
int n;
while (scanf("%d", &n) != EOF){
int sum = 1;
for (int i = 1; i <= n; i++){
sum = sum * i;
while (sum % 10 == 0){
sum /= 10;
}
sum %= 100000;
}
printf("%5d -> %d\n", n, sum % 10);
}
return 0;
}
贴个牛叉的代码,用到分解因子。
#include<stdio.h>
int main()
{
int n,i,num;
while(scanf("%d",&n)!=EOF)
{
num=1;
for(i=1;i<=n;i++)
{
if(i%5==0)
{
int x=i;
while(x%10==0)
x/=10;
while(x%5==0)
{
x/=5;
num/=2;
}
num*=x;
}
else
num*=i;
num%=100000;//一定要至少保留后五位非零位(五位以上要注意int型溢出,因此取五位最佳),因为后五位非零位的进位(极限情况3125,即5^5)会影响到最后的非零位
}
printf("%5d -> %d\n",n,num%10);
}
return 0;
}