
这是一个基于 RBF 神经网络辨识 和 单神经元 PID 模型参考自适应控制 的系统框图,包含以下主要部分:
- RBF 神经网络模块:用于对系统进行辨识,输入误差 e(t)e(t)e(t) 和误差变化量 Δe(t)\Delta e(t)Δe(t),输出与系统特性相关的辨识结果,为控制器参数调整提供依据。
- 单神经元 PID 控制器:根据 RBF 神经网络的输出,自适应调整 PID 控制器的比例增益 KpK_pKp、积分增益 KiK_iKi、微分增益 KdK_dKd。
- 参考模型:定义期望的系统响应行为,用于生成理想输出,作为实际输出的比较基准。
- 被控对象:受控的目标系统,接收控制信号后产生实际输出。
- 反馈回路:通过测量系统实际输出,与参考模型输出进行比较,计算误差 e(t)e(t)e(t) 和误差变化量 Δe(t)\Delta e(t)Δe(t),输入到神经网络和控制器中。
信号流动通过箭头清晰标识,框图清晰呈现了各模块间的关系以及信号处理过程,反映了系统的自适应调整机制和控制策略。
基于 RBF 神经网络辨识的单神经元 PID 模型参考自适应控制 是一种结合了 RBF(径向基函数)神经网络和单神经元自适应 PID 控制的方法。该方法通过神经网络进行系统辨识,利用辨识到的模型来调整 PID 控制器的参数。具体来说,RBF 神经网络根据误差和误差变化量的输入,学习并适应系统的动态特性,从而为 PID 控制器提供更准确的参数调整。
基本原理
-
系统辨识:首先,RBF 神经网络通过输入的误差和误差变化量来识别系统的动态特性。神经网络学习如何将误差和误差变化量映射到 PID 参数(比例增益 KpK_pKp、积分增益 KiK_iKi、微分增益 KdK_dKd)上。
-
PID 控制:基于 RBF 神经网络的辨识结果,PID 控制器动态调整增益 KpK_pKp、KiK_iKi、KdK_dKd,使得系统能够快速、准确地响应目标。
-
参考自适应控制:该方法结合了参考模型来设计控制策略。通过引入参考模型,控制系统的目标是使实际系统的输出尽量接近参考模型的输出,从而达到期望的控制效果。

最低0.47元/天 解锁文章
2815

被折叠的 条评论
为什么被折叠?



